On solutions of second order elliptic equations in cylindrical domains
Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 131-143 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In a semi-infinite cylinder, we consider a second order elliptic equation with a lower order term. On the lateral boundary of the cylinder we impose the homogeneous Neumann condition. We show that each bounded solution tends to a constant at infinity and once the lower order term does not decay too fast, this constant vanishes. We establish that for a sufficiently fast decay of the lower order term, we have a trichotomy of the solutions as for the equation without the lower order term: the solution tends to a general non-zero constant or grows linearly or grows exponentially. The decay conditions for the lower order term are formulated in an integral form.
Keywords: Neumann boundary value condition, unbounded domain, low order term, asymptotic behavior of solutions, trichotomy of solutions.
Mots-clés : elliptic equation
@article{UFA_2016_8_4_a9,
     author = {A. V. Nekludov},
     title = {On solutions of second order elliptic equations in cylindrical domains},
     journal = {Ufa mathematical journal},
     pages = {131--143},
     year = {2016},
     volume = {8},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a9/}
}
TY  - JOUR
AU  - A. V. Nekludov
TI  - On solutions of second order elliptic equations in cylindrical domains
JO  - Ufa mathematical journal
PY  - 2016
SP  - 131
EP  - 143
VL  - 8
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a9/
LA  - en
ID  - UFA_2016_8_4_a9
ER  - 
%0 Journal Article
%A A. V. Nekludov
%T On solutions of second order elliptic equations in cylindrical domains
%J Ufa mathematical journal
%D 2016
%P 131-143
%V 8
%N 4
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a9/
%G en
%F UFA_2016_8_4_a9
A. V. Nekludov. On solutions of second order elliptic equations in cylindrical domains. Ufa mathematical journal, Tome 8 (2016) no. 4, pp. 131-143. http://geodesic.mathdoc.fr/item/UFA_2016_8_4_a9/

[1] Landis E. M., Panasenko G. P., “Ob odnom variante teoremy tipa Fragmena-Lindelefa dlya ellipticheskikh uravnenii s koeffitsientami, periodicheskimi po vsem peremennym, krome odnoi”, Tr. sem. im. I. G. Petrovskogo, 5, 1979, 105–136

[2] Oleinik O. A., Iosifyan G. A., “O povedenii na beskonechnosti reshenii ellipticheskikh uravnenii vtorogo poryadka v oblastyakh s nekompaktnoi granitsei”, Matem. sb., 112(154):4 (1980), 588–610 | MR | Zbl

[3] O. A. Oleinik, G. A. Yosifian, “On the asymptotic behavior at infinity of solutions in linear elasticity”, Archive Rat. Mech. and Analysis, 78:1 (1982), 29–53 | DOI | MR | Zbl

[4] Neklyudov A. V., “O zadache Neimana dlya divergentnykh ellipticheskikh uravnenii vysokogo poryadka v neogranichennoi oblasti, blizkoi k tsilindru”, Tr. sem. im. I. G. Petrovskogo, 16, 1991, 191–217

[5] Pyatnitskii A. L., “O povedenii na beskonechnosti resheniya ellipticheskogo uravneniya vtorogo poryadka, zadannogo v tsilindre”, UMN, 37:2 (1982), 231–232 | MR | Zbl

[6] Neklyudov A. V., “O resheniyakh nedivergentnykh ellipticheskikh uravnenii vtorogo poryadka, opredelennykh v neogranichennoi oblasti”, Vestnik Moskovskogo universiteta, Ser. 1. Matem. Mekh., 1989, no. 1, 93–95 | MR | Zbl

[7] Kondratev V. A., “O polozhitelnykh resheniyakh slabo nelineinykh ellipticheskikh uravnenii vtorogo poryadka v tsilindricheskikh oblastyakh”, Tr. MIAN, 250, 2005, 183–191 | MR | Zbl

[8] Ladyzhenskaya O. A., Uraltseva N. N., Lineinye i kvazilineinye uravneniya ellipticheskogo tipa, Nauka, M., 1964, 540 pp.

[9] Lakhturov S. S., “Ob asimptotike reshenii vtoroi kraevoi zadachi v neogranichennykh oblastyakh”, UMN, 35:4 (1980), 195–196 | MR | Zbl

[10] Neklyudov A. V., “Povedenie reshenii polulineinogo ellipticheskogo uravneniya vtorogo poryadka vida $Lu=e^u$ v beskonechnom tsilindre”, Matem. zametki, 85:3 (2009), 408–420 | DOI | MR | Zbl

[11] Bellman R., Teoriya ustoichivosti reshenii differentsialnykh uravnenii, Izdatelstvo inostrannoi literatury, M., 1954, 216 pp. | MR