Mots-clés : quantization, Painlevé equations, isomonodromic deformations
@article{UFA_2016_8_3_a12,
author = {B. I. Suleimanov},
title = {Quantum aspects of the integrability of the third {Painlev\'e} equation and a~non-stationary time {Schr\"odinger} equation with the {Morse} potential},
journal = {Ufa mathematical journal},
pages = {136--154},
year = {2016},
volume = {8},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a12/}
}
TY - JOUR AU - B. I. Suleimanov TI - Quantum aspects of the integrability of the third Painlevé equation and a non-stationary time Schrödinger equation with the Morse potential JO - Ufa mathematical journal PY - 2016 SP - 136 EP - 154 VL - 8 IS - 3 UR - http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a12/ LA - en ID - UFA_2016_8_3_a12 ER -
%0 Journal Article %A B. I. Suleimanov %T Quantum aspects of the integrability of the third Painlevé equation and a non-stationary time Schrödinger equation with the Morse potential %J Ufa mathematical journal %D 2016 %P 136-154 %V 8 %N 3 %U http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a12/ %G en %F UFA_2016_8_3_a12
B. I. Suleimanov. Quantum aspects of the integrability of the third Painlevé equation and a non-stationary time Schrödinger equation with the Morse potential. Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 136-154. http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a12/
[1] J. Malmquist, “Sur les équations différentielles du second ordre, dont l'intégrale générale a ses points critiques fixes”, Ark. Mat. Astr. Fys., 17:8 (1922–23), 1–89 | Zbl
[2] Lukashevich N. A., “O funktsiyakh, opredelyaemykh odnoi sistemoi differentsialnykh uravnenii”, Diff. uravnen., 5:1 (1969), 379–381 | Zbl
[3] K. Okamoto, “Polinomial Hamiltonians associated with Painlevé equations”, Proc. Japan Acad. A, 56 (1980), 264–268 | DOI | MR | Zbl
[4] Tsegelnik V. V., “Gamiltoniany, assotsiirovannye s tretim i pyatym uravneniyami Penleve”, TMF, 162:1 (2010), 69–74 | DOI | MR | Zbl
[5] A. A. Kapaev, E. Hubert, “A note on the Lax pairs for Painlevé quations”, J. Phys. A, 32:46 (1999), 8145–8156 | DOI | MR | Zbl
[6] A. A. Kapaev, “Lax pairs for Painlevé equations”, CRM Proc. Lecture Notes, 31 (2002), 37–48 | MR | Zbl
[7] J. Harnad, “Dual isomonodromic deformations and moment maps to loop algebras”, Commun. Math. Phys., 166:2 (1994), 337–365 | DOI | MR | Zbl
[8] J. Harnad, A. R. Its, “Integrable Fredholm operators and dual isomonodromic deformations”, Commun. Math. Phys., 226:3 (2002), 497–530 | DOI | MR | Zbl
[9] Suleimanov B. I., “ ‘Kvantovaniya’ vtorogo uravneniya Penleve i problema ekvivalentnosti ego $L-A$-par”, TMF, 156:3 (2008), 364–377 | DOI | MR | Zbl
[10] N. Joshi, A. V. Kitaev, P. A. Treharne, “On the linearization of the first and second Painlevé equations”, J. Phys. A, 42:5 (2009), 05528, 18 pp. | DOI | MR
[11] R. Garnier, “Sur des equations differentielles du troisieme ordre dont l'integrale generale est uniforme et sur une classe d'equations nouvelles d'ordre superieur dont l'integrale generale a ses points critiques fixes”, Ann. Sci. Ecole Normale Sup (3), 29, 1912, 1–126 | MR | Zbl
[12] Culeimanov B. I., “Gamiltonovoct uravnenii Penleve i metod izomonodromnykh deformatsii”, Diff. uravn., 30:5 (1994), 791–796 | MR
[13] A. Zabrodin, A. Zotov, “Quantum Painlevé–Calogero correspondence”, J. Math. Phys., 53 (2012), 073507, 19 pp. | DOI | MR | Zbl
[14] A. Zabrodin, A. Zotov, “Classical-quantum correspondence and functional relations for Painlevé equations”, Constr. Approx., 41:3 (2015), 385–423 ; arXiv: 1212.5813 | DOI | MR | Zbl
[15] Culeimanov B. I., “Kvantovanie nekotorykh avtonomnykh reduktsii uravnenii Penleve i staraya kvantovaya teoriya”, Tezisy mezhdunarodnoi konferentsii, posvyaschennoi pamyati I. G. Petrovskogo “23-e sovmestnoe zasedanie Moskovskogo matematicheskogo obschestva i seminara imeni I. G. Petrovskogo”, Moskva, 2011, 356–357
[16] Suleimanov B. I., “ ‘Kvantovaya’ linearizatsiya uravnenii Penleve kak komponenta ikh $L-A$ par”, Ufimskii matematicheskii zhurnal, 4:2 (2012), 127–135 | MR
[17] Suleimanov B. I., “ ‘Kvantovaniya’ vysshikh gamiltonovykh analogov uravnenii Penleve I i II s dvumya stepenyami svobody”, Funktsionalnyi analiz i ego prilozheniya, 48:3 (2014), 52–62 | DOI | MR | Zbl
[18] Novikov D. P., Suleimanov B. I., “ ‘Kvantovaniya’ izomonodromnoi gamiltonovoi sistemy Garne s dvumya stepenyami svobody”, TMF, 187:1 (2016), 39–57 | DOI | MR | Zbl
[19] Novikov D. P., “O sisteme Shlezingera s matritsami razmera $2\times2$ i uravnenii Belavina–Polyakova–Zamolodchikova”, TMF, 161:2 (2009), 191–203 | DOI | MR | Zbl
[20] D. P. Novikov, “A monodromy problem and some functions connected with Painlevé 6”, Intrenational Conference “Painleve equations and Related Topics”, Proceedings of International Conference, Euler International Mathematical Institute, St.-Petrsburg, 2011, 118–121
[21] Novikov D. P., Romanovskii R. K., Sadovnichuk S. G., Nekotorye novye metody konechnozonnogo integrirovaniya solitonnykh uravnenii, Nauka, Novosibirsk, 2013, 251 pp.
[22] A. Bloemendal, B. Virag, “Limits of spiked random matrices I”, Probability Theory and Related Fields, 156:3–4 (2013), 795–825 | DOI | MR | Zbl
[23] Zotov A. V., Smirnov A. V., “Modifikatsiya rassloenii, ellipticheskie integriruemye sistemy i svyazannye zadachi”, TMF, 177:1 (2013), 3–67 | DOI | MR | Zbl
[24] Levin A. M., Olshanetskii M. A., Zotov A. V., “Klassifikatsiya izomonodromnykh zadach na ellipticheskikh krivykh”, UMN, 69:1(415) (2014), 39–124 | DOI | MR | Zbl
[25] H. Nagoya, “Hypergeometric solutions to Schrödinger equation for the quantum Painlevé equations”, J. Math. Phys., 52:8 (2011), 083509, 16 pp. | DOI | MR | Zbl
[26] H. Nagoya, Y. Yamada, “Symmetries of quantum Lax equations for the Painlevé equations”, Annales Henri Poincare, 15:3 (2014), 313–344 | DOI | MR | Zbl
[27] I. Rumanov, “Classical integrability for beta-ensembles and general Fokker–Planck equations”, J. Math. Phys., 56:1 (2015), 013508, 16 pp. | DOI | MR | Zbl
[28] H. Rosengren, “Special polynomials related to the supersymmetric eight-vertex model: a summary”, Commun. Math. Phys., 349:3 (2015), 1143–1170 | DOI | MR
[29] A. M. Grundland, D. Riglioni, “Classical-quantum correspondence for shape-invariant systems”, J. Phys. A, 48:24 (2015), 245201–245215 | DOI | MR
[30] R. Conte, I. Dornic, “The master Painlevé VI heat equation”, C. R. Math. Acad. Sci. Paris, 352:10 (2014), 803–806 | DOI | MR | Zbl
[31] Clavyanov S. Yu., “Strukturnaya teoriya spetsialnykh funktsii”, TMF, 119:1 (1999), 3–19 | DOI | MR | Zbl
[32] Messia A., Kvantovaya mekhanika, v. 1, Nauka, M., 1978, 480 pp. | MR
[33] Astapenko V. A., Romadanovskii M. S., “Vozbuzhdenie ostsillyatora Morze sverkhkorotkim chirpirovannym impulsom”, ZhETF, 137:3 (2010), 429–436
[34] Landau L. D., Lifshits E. M., Kvantovaya mekhanika. Nerelyativistkaya teoriya, Nauka, M., 1974, 752 pp. | MR
[35] Flyugge Z., Zadachi po kvantovoi mekhanike, v. 1, Mir, M., 1974, 344 pp.
[36] H. Kimura, “The deneration of the Two Dimensional Garnier System and the Polynomial Hamiltonian Structure”, Annali di Matematica pura et applicata (IV), 155 (1989), 25–74 | DOI | MR | Zbl
[37] H. Kawakami, A. Nakamura, H. Sakai, “Toward a classification of $4$-dimensional Painlevé-type equations”, Contemporary Mathematics, 5933 (2013), 143–161 | DOI | MR
[38] H. Kawakami, A. Nakamura, H. Sakai, Degeneration scheme of $4$-dimensional Painlevé-type equations, 2012, arXiv: 1209.3836
[39] A. Nakamura, Autonomous limit of $4$-dimensional Painlevé-type equations and degeneration of curves of genus two, 2015, arXiv: 1505.00885
[40] M. Sato, T. Miwa, M. Jimbo, “Holonomic quantum fields”, Publ. Rims Kyoto Uiv., 15 (1979), 201–278 | DOI | MR | Zbl