Quantum aspects of the integrability of the third Painlevé equation and a non-stationary time Schrödinger equation with the Morse potential
Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 136-154 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In terms of solutions to isomonodromic deformations equation for the third Painlevé equation, we write out the simultaneous solution of three linear partial differential equations. The first of them is a quantum analogue of the linearization of the third Painlevé equation written in one of the forms. The second is an analogue of the time Schrödinger equation determined by the Hamiltonian structure of this ordinary differential equation. The third is a first order equation with the coefficients depending explicitly on the solutions to the third Painlevé equation. For the autonomous reduction of the third Painlevé equation this simultaneous solution defines solutions to a time quantum mechanical Schrödinger equation, which is equivalent to a time Schrödinger equation with a known Morse potential. These solutions satisfy also linear differential equations with the coefficients depending explicitly on the solutions of the corresponding autonomous Hamiltonian system. It is shown that the condition of global boundedness in the spatial variable of the constructed solution to the Schrödinger equation is related to determining these solutions to the classical Hamiltonian system by Bohr–Sommerfeld rule of the old quantum mechanics.
Keywords: linearization, Hamiltonian, nonstationary Schrödinger equation, Morse potential.
Mots-clés : quantization, Painlevé equations, isomonodromic deformations
@article{UFA_2016_8_3_a12,
     author = {B. I. Suleimanov},
     title = {Quantum aspects of the integrability of the third {Painlev\'e} equation and a~non-stationary time {Schr\"odinger} equation with the {Morse} potential},
     journal = {Ufa mathematical journal},
     pages = {136--154},
     year = {2016},
     volume = {8},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a12/}
}
TY  - JOUR
AU  - B. I. Suleimanov
TI  - Quantum aspects of the integrability of the third Painlevé equation and a non-stationary time Schrödinger equation with the Morse potential
JO  - Ufa mathematical journal
PY  - 2016
SP  - 136
EP  - 154
VL  - 8
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a12/
LA  - en
ID  - UFA_2016_8_3_a12
ER  - 
%0 Journal Article
%A B. I. Suleimanov
%T Quantum aspects of the integrability of the third Painlevé equation and a non-stationary time Schrödinger equation with the Morse potential
%J Ufa mathematical journal
%D 2016
%P 136-154
%V 8
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a12/
%G en
%F UFA_2016_8_3_a12
B. I. Suleimanov. Quantum aspects of the integrability of the third Painlevé equation and a non-stationary time Schrödinger equation with the Morse potential. Ufa mathematical journal, Tome 8 (2016) no. 3, pp. 136-154. http://geodesic.mathdoc.fr/item/UFA_2016_8_3_a12/

[1] J. Malmquist, “Sur les équations différentielles du second ordre, dont l'intégrale générale a ses points critiques fixes”, Ark. Mat. Astr. Fys., 17:8 (1922–23), 1–89 | Zbl

[2] Lukashevich N. A., “O funktsiyakh, opredelyaemykh odnoi sistemoi differentsialnykh uravnenii”, Diff. uravnen., 5:1 (1969), 379–381 | Zbl

[3] K. Okamoto, “Polinomial Hamiltonians associated with Painlevé equations”, Proc. Japan Acad. A, 56 (1980), 264–268 | DOI | MR | Zbl

[4] Tsegelnik V. V., “Gamiltoniany, assotsiirovannye s tretim i pyatym uravneniyami Penleve”, TMF, 162:1 (2010), 69–74 | DOI | MR | Zbl

[5] A. A. Kapaev, E. Hubert, “A note on the Lax pairs for Painlevé quations”, J. Phys. A, 32:46 (1999), 8145–8156 | DOI | MR | Zbl

[6] A. A. Kapaev, “Lax pairs for Painlevé equations”, CRM Proc. Lecture Notes, 31 (2002), 37–48 | MR | Zbl

[7] J. Harnad, “Dual isomonodromic deformations and moment maps to loop algebras”, Commun. Math. Phys., 166:2 (1994), 337–365 | DOI | MR | Zbl

[8] J. Harnad, A. R. Its, “Integrable Fredholm operators and dual isomonodromic deformations”, Commun. Math. Phys., 226:3 (2002), 497–530 | DOI | MR | Zbl

[9] Suleimanov B. I., “ ‘Kvantovaniya’ vtorogo uravneniya Penleve i problema ekvivalentnosti ego $L-A$-par”, TMF, 156:3 (2008), 364–377 | DOI | MR | Zbl

[10] N. Joshi, A. V. Kitaev, P. A. Treharne, “On the linearization of the first and second Painlevé equations”, J. Phys. A, 42:5 (2009), 05528, 18 pp. | DOI | MR

[11] R. Garnier, “Sur des equations differentielles du troisieme ordre dont l'integrale generale est uniforme et sur une classe d'equations nouvelles d'ordre superieur dont l'integrale generale a ses points critiques fixes”, Ann. Sci. Ecole Normale Sup (3), 29, 1912, 1–126 | MR | Zbl

[12] Culeimanov B. I., “Gamiltonovoct uravnenii Penleve i metod izomonodromnykh deformatsii”, Diff. uravn., 30:5 (1994), 791–796 | MR

[13] A. Zabrodin, A. Zotov, “Quantum Painlevé–Calogero correspondence”, J. Math. Phys., 53 (2012), 073507, 19 pp. | DOI | MR | Zbl

[14] A. Zabrodin, A. Zotov, “Classical-quantum correspondence and functional relations for Painlevé equations”, Constr. Approx., 41:3 (2015), 385–423 ; arXiv: 1212.5813 | DOI | MR | Zbl

[15] Culeimanov B. I., “Kvantovanie nekotorykh avtonomnykh reduktsii uravnenii Penleve i staraya kvantovaya teoriya”, Tezisy mezhdunarodnoi konferentsii, posvyaschennoi pamyati I. G. Petrovskogo “23-e sovmestnoe zasedanie Moskovskogo matematicheskogo obschestva i seminara imeni I. G. Petrovskogo”, Moskva, 2011, 356–357

[16] Suleimanov B. I., “ ‘Kvantovaya’ linearizatsiya uravnenii Penleve kak komponenta ikh $L-A$ par”, Ufimskii matematicheskii zhurnal, 4:2 (2012), 127–135 | MR

[17] Suleimanov B. I., “ ‘Kvantovaniya’ vysshikh gamiltonovykh analogov uravnenii Penleve I i II s dvumya stepenyami svobody”, Funktsionalnyi analiz i ego prilozheniya, 48:3 (2014), 52–62 | DOI | MR | Zbl

[18] Novikov D. P., Suleimanov B. I., “ ‘Kvantovaniya’ izomonodromnoi gamiltonovoi sistemy Garne s dvumya stepenyami svobody”, TMF, 187:1 (2016), 39–57 | DOI | MR | Zbl

[19] Novikov D. P., “O sisteme Shlezingera s matritsami razmera $2\times2$ i uravnenii Belavina–Polyakova–Zamolodchikova”, TMF, 161:2 (2009), 191–203 | DOI | MR | Zbl

[20] D. P. Novikov, “A monodromy problem and some functions connected with Painlevé 6”, Intrenational Conference “Painleve equations and Related Topics”, Proceedings of International Conference, Euler International Mathematical Institute, St.-Petrsburg, 2011, 118–121

[21] Novikov D. P., Romanovskii R. K., Sadovnichuk S. G., Nekotorye novye metody konechnozonnogo integrirovaniya solitonnykh uravnenii, Nauka, Novosibirsk, 2013, 251 pp.

[22] A. Bloemendal, B. Virag, “Limits of spiked random matrices I”, Probability Theory and Related Fields, 156:3–4 (2013), 795–825 | DOI | MR | Zbl

[23] Zotov A. V., Smirnov A. V., “Modifikatsiya rassloenii, ellipticheskie integriruemye sistemy i svyazannye zadachi”, TMF, 177:1 (2013), 3–67 | DOI | MR | Zbl

[24] Levin A. M., Olshanetskii M. A., Zotov A. V., “Klassifikatsiya izomonodromnykh zadach na ellipticheskikh krivykh”, UMN, 69:1(415) (2014), 39–124 | DOI | MR | Zbl

[25] H. Nagoya, “Hypergeometric solutions to Schrödinger equation for the quantum Painlevé equations”, J. Math. Phys., 52:8 (2011), 083509, 16 pp. | DOI | MR | Zbl

[26] H. Nagoya, Y. Yamada, “Symmetries of quantum Lax equations for the Painlevé equations”, Annales Henri Poincare, 15:3 (2014), 313–344 | DOI | MR | Zbl

[27] I. Rumanov, “Classical integrability for beta-ensembles and general Fokker–Planck equations”, J. Math. Phys., 56:1 (2015), 013508, 16 pp. | DOI | MR | Zbl

[28] H. Rosengren, “Special polynomials related to the supersymmetric eight-vertex model: a summary”, Commun. Math. Phys., 349:3 (2015), 1143–1170 | DOI | MR

[29] A. M. Grundland, D. Riglioni, “Classical-quantum correspondence for shape-invariant systems”, J. Phys. A, 48:24 (2015), 245201–245215 | DOI | MR

[30] R. Conte, I. Dornic, “The master Painlevé VI heat equation”, C. R. Math. Acad. Sci. Paris, 352:10 (2014), 803–806 | DOI | MR | Zbl

[31] Clavyanov S. Yu., “Strukturnaya teoriya spetsialnykh funktsii”, TMF, 119:1 (1999), 3–19 | DOI | MR | Zbl

[32] Messia A., Kvantovaya mekhanika, v. 1, Nauka, M., 1978, 480 pp. | MR

[33] Astapenko V. A., Romadanovskii M. S., “Vozbuzhdenie ostsillyatora Morze sverkhkorotkim chirpirovannym impulsom”, ZhETF, 137:3 (2010), 429–436

[34] Landau L. D., Lifshits E. M., Kvantovaya mekhanika. Nerelyativistkaya teoriya, Nauka, M., 1974, 752 pp. | MR

[35] Flyugge Z., Zadachi po kvantovoi mekhanike, v. 1, Mir, M., 1974, 344 pp.

[36] H. Kimura, “The deneration of the Two Dimensional Garnier System and the Polynomial Hamiltonian Structure”, Annali di Matematica pura et applicata (IV), 155 (1989), 25–74 | DOI | MR | Zbl

[37] H. Kawakami, A. Nakamura, H. Sakai, “Toward a classification of $4$-dimensional Painlevé-type equations”, Contemporary Mathematics, 5933 (2013), 143–161 | DOI | MR

[38] H. Kawakami, A. Nakamura, H. Sakai, Degeneration scheme of $4$-dimensional Painlevé-type equations, 2012, arXiv: 1209.3836

[39] A. Nakamura, Autonomous limit of $4$-dimensional Painlevé-type equations and degeneration of curves of genus two, 2015, arXiv: 1505.00885

[40] M. Sato, T. Miwa, M. Jimbo, “Holonomic quantum fields”, Publ. Rims Kyoto Uiv., 15 (1979), 201–278 | DOI | MR | Zbl