Helly's theorem and shifts of sets.~I
Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 95-107

Voir la notice de l'article provenant de la source Math-Net.Ru

The motivation for the considered geometric problems is the study of conditions under which an exponential system is incomplete in spaces of the functions holomorphic in a compact set $C $ and continuous on this compact set. The exponents of this exponential system are zeroes for a sum (finite or infinite) of families of entire functions of exponential type. As $C$ is a convex compact set, this problem happens to be closely connected to Helly's theorem on the intersection of convex sets in the following treatment. Let $C$ and $S $ be two sets in a finite-dimensional Euclidean space being respectively intersections and unions of some subsets. We give criteria for some parallel translation (shift) of set $C$ to cover (respectively, to contain or to intersect) set $S$. These and similar criteria are formulated in terms of geometric, algebraic, and set-theoretic differences of subsets generating $C $ and $S$.
Keywords: Helly's theorem, incompleteness of exponential systems, convexity, shift, geometric, and set-theoretic differences.
Mots-clés : algebraic
@article{UFA_2014_6_3_a6,
     author = {B. N. Khabibullin},
     title = {Helly's theorem and shifts of {sets.~I}},
     journal = {Ufa mathematical journal},
     pages = {95--107},
     publisher = {mathdoc},
     volume = {6},
     number = {3},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a6/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Helly's theorem and shifts of sets.~I
JO  - Ufa mathematical journal
PY  - 2014
SP  - 95
EP  - 107
VL  - 6
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a6/
LA  - en
ID  - UFA_2014_6_3_a6
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Helly's theorem and shifts of sets.~I
%J Ufa mathematical journal
%D 2014
%P 95-107
%V 6
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a6/
%G en
%F UFA_2014_6_3_a6
B. N. Khabibullin. Helly's theorem and shifts of sets.~I. Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 95-107. http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a6/