Helly's theorem and shifts of sets. I
Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 95-107 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The motivation for the considered geometric problems is the study of conditions under which an exponential system is incomplete in spaces of the functions holomorphic in a compact set $C $ and continuous on this compact set. The exponents of this exponential system are zeroes for a sum (finite or infinite) of families of entire functions of exponential type. As $C$ is a convex compact set, this problem happens to be closely connected to Helly's theorem on the intersection of convex sets in the following treatment. Let $C$ and $S $ be two sets in a finite-dimensional Euclidean space being respectively intersections and unions of some subsets. We give criteria for some parallel translation (shift) of set $C$ to cover (respectively, to contain or to intersect) set $S$. These and similar criteria are formulated in terms of geometric, algebraic, and set-theoretic differences of subsets generating $C $ and $S$.
Keywords: Helly's theorem, incompleteness of exponential systems, convexity, shift, geometric, and set-theoretic differences.
Mots-clés : algebraic
@article{UFA_2014_6_3_a6,
     author = {B. N. Khabibullin},
     title = {Helly's theorem and shifts of {sets.~I}},
     journal = {Ufa mathematical journal},
     pages = {95--107},
     year = {2014},
     volume = {6},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a6/}
}
TY  - JOUR
AU  - B. N. Khabibullin
TI  - Helly's theorem and shifts of sets. I
JO  - Ufa mathematical journal
PY  - 2014
SP  - 95
EP  - 107
VL  - 6
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a6/
LA  - en
ID  - UFA_2014_6_3_a6
ER  - 
%0 Journal Article
%A B. N. Khabibullin
%T Helly's theorem and shifts of sets. I
%J Ufa mathematical journal
%D 2014
%P 95-107
%V 6
%N 3
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a6/
%G en
%F UFA_2014_6_3_a6
B. N. Khabibullin. Helly's theorem and shifts of sets. I. Ufa mathematical journal, Tome 6 (2014) no. 3, pp. 95-107. http://geodesic.mathdoc.fr/item/UFA_2014_6_3_a6/

[1] Levin B. Ya., Raspredelenie kornei tselykh funktsii, Fizmatgiz, M., 1956

[2] B. Ya. Levin, Lectures on entire functions, Transl. Math. Monographs, 150, Amer. Math. Soc., Providence, RI, 1996 | MR | Zbl

[3] Khabibullin B. N., Polnota sistem eksponent i mnozhestva edinstvennosti, izdanie chetvertoe, dopolnennoe, RITs BashGU, Ufa, 2012

[4] Khabibullin B. N., “Translyaty vypuklykh mnozhestv”, Sovremennye metody teorii kraevykh zadach, Materialy Voronezhskoi vesennei matematicheskai shkoly “Pontryaginskie chteniya–XXIV”, Izdatelsko-poligraficheskii tsentr VGU, Voronezh, 2013, 207–208

[5] Khabibullin B. N., “Teorema Khelli, translyaty mnozhestv i opornaya funktsiya”, Nelineinye uravneniya i kompleksnyi analiz, Sbornik tezisov, Institut matematiki UNTs RAN, Ufa, 2013, 51–53

[6] Khabibullin B. N., “Teorema Khelli i pokrytie translyatami”, Materialy XI Kazanskaya letnyaya shkola-konferentsiya “Teoriya funktsii, ee prilozheniya i smezhnye voprosy”, Institut matematiki i mekhaniki im. N. I. Lobachevskogo, Kazan, 2013, 196–199

[7] B. N. Khabibullin, “Helly's Theorem and translation of convex sets”, Asymptotic geometric analysis, EIMI, Saint-Petersburg, 2013, 9–10

[8] Dantser L., Gryunbaum B., Kli V., Teorema Khelli, Mir, M., 1968

[9] Rokafellar R. T., Vypuklyi analiz, Mir, M., 1973

[10] Leikhtveis K., Vypuklye mnozhestva, Nauka, M., 1985 | MR

[11] Tikhomirov V. M., “Vypuklyi analiz”, Itogi nauki i tekhn. Ser. Sovrem. probl. mat. Fundam. napravleniya, 14, Moskva, 1987, 5–101 | MR | Zbl

[12] Magaril-Ilyaev G. G., Tikhomirov V. M., Vypuklyi analiz i ego prilozheniya, Editorial URSS, M., 2000

[13] Polovinkin E. S., Balashov M. V., Elementy vypuklogo i silno vypuklogo analiza, Fizmatlit, M., 2004

[14] R. T. Rockafellar, “Helly's theorem and minima of convex functions”, Duke Math. J., 32 (1965), 381–398 | DOI | MR

[15] L. Sandgren, “On convex cones”, Math. Scand., 2 (1954), 19–28 | MR | Zbl

[16] V. Klee, “Infinite-dimensional intersection theorems”, Convexity, Proceedings of the Seventh Symposium in Pure Mathematics of the American Mathematical Society, ed. V. Klee, 1963, 349–360 | DOI | MR | Zbl

[17] Pontryagin L. S., “Lineinye differentsialnye igry presledovaniya”, DAN SSSR, 175 (1967), 764–766 | Zbl

[18] Pontryagin L. S., “Lineinye differentsialnye igry presledovaniya”, Matem. sbornik, 112(154):3(7) (1980), 307–330 | MR | Zbl

[19] Petrov N. N., Vvedenie v vypuklyi analiz, Udmurtskii gosudarstvennyi universitet, Izhevsk, 2009

[20] Tolstonogov A. A., Differentsialnye vklyucheniya v banakhovom prostranstve, Nauka, M., 1986 | MR | Zbl

[21] Demyanov V. F., Rubinov A. M., Osnovy negladkogo analiza i kvazidifferentsialnoe ischislenie, Nauka, M., 1995 | MR

[22] Pecherskii S. L., “Znachenie Shepli TP igr, raznosti $c$-yader vypuklykh igr i tochka Shteinera vypuklykh kompaktov”, Matematicheskaya teoriya igr i eë prilozheniya, 4:3 (2012), 58–85

[23] Avvakumov S. N., Kiselev Yu. N., “Opornye funktsii nekotorykh spetsialnykh mnozhestv, konstruktivnye protsedury sglazhivaniya, geometricheskaya raznost”, Problemy dinamicheskogo upravleniya, 1, MAKS Press, M., 2005, 24–110 elektronnaya versiya: http://oc.cs.msu.su/download/76/kiselev05.pdf | MR

[24] Dolnikov V. L., Teoremy tipa Khelli dlya transversalei semeistv mnozhestv i ikh prilozheniya, Dissertatsiya i avtoreferat na soiskanie uchenoi stepeni d.f.-m.n., Yaroslavl, 2000

[25] Bogatyi S. A., “Topologicheskaya teorema Khelli”, Fundament. i prikl. matem., 8:2 (2002), 365–405 | MR | Zbl

[26] Bobylev N. A., “Teorema Khelli dlya zvëzdnykh mnozhestv”, Trudy mezhdunarodnoi konferentsii, posvyaschennoi 90-letiyu so dnya rozhdeniya L. S. Pontryagina (Moskva, 31 avgusta – 6 sentyabrya 1998 g.), v. 7, Itogi nauki i tekhn. Ser. Sovrem. mat. i ee pril. Temat. obzory, 68, Geometriya i topologiya, VINITI, M., 1999, 16–26 | MR | Zbl

[27] Karasev R. N., “Topologicheskie metody v kombinatornoi geometrii”, UMN, 63:6(384) (2008), 39–90 | DOI | MR | Zbl