Mots-clés : convex domains, Cauchy–Hadamard formula.
@article{UFA_2014_6_1_a6,
author = {S. G. Merzlyakov},
title = {Cauchy{\textendash}Hadamard theorem for exponential series},
journal = {Ufa mathematical journal},
pages = {71--79},
year = {2014},
volume = {6},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a6/}
}
S. G. Merzlyakov. Cauchy–Hadamard theorem for exponential series. Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 71-79. http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a6/
[1] G. Valiron, “Sur l'abscisse de convergence des séries de Diriclet”, Bull. Soc. math. de France, 52 (1924), 166–174 | MR | Zbl
[2] Krivosheeva O. A., “Oblast skhodimosti ryadov eksponentsialnykh monomov”, Ufimsk. matem. zhurn., 3:2 (2011), 43–56 | Zbl
[3] Le Hai Khoi, “Holomorphic Dirichlet series in several variables”, Math. Scand., 77:1 (1995), 85–107 | MR | Zbl
[4] Merzlyakov S. G., “Integraly ot eksponenty po mere Radona”, Ufimsk. matem. zhurn., 3:2 (2011), 57–80 | Zbl
[5] Leontev A. F., Ryady eksponent, Nauka, M., 1976, 536 pp. | MR
[6] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 470 pp.
[7] Shabat B. V., Vvedenie v kompleksnyi analiz, Chast 2, Nauka, M., 1976, 400 pp. | MR
[8] Burbaki N., Obschaya topologiya. Topologicheskie gruppy. Chisla i svyazannye s nimi gruppy i prostranstva, Nauka, M., 1969, 392 pp. | MR
[9] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964, 430 pp.