Cauchy–Hadamard theorem for exponential series
Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 71-79 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In this paper we study the connection between the growth of coefficients of an exponentials series with its convergence domain in finite-dimensional real and complex spaces. Among the first results of the subject is the well-known Cauchy–Hadamard formula. We obtain exact conditions on the exponentials and a convex region in which there is a generalization of the Cauchy–Hadamard theorem. To the sequence of coefficients of exponential series we associate a space of sequences forming a commutative ring with unit. The study of the properties of this ring allows us to obtain the results on solvability of non-homogeneous systems of convolution equations.
Keywords: series of exponentials
Mots-clés : convex domains, Cauchy–Hadamard formula.
@article{UFA_2014_6_1_a6,
     author = {S. G. Merzlyakov},
     title = {Cauchy{\textendash}Hadamard theorem for exponential series},
     journal = {Ufa mathematical journal},
     pages = {71--79},
     year = {2014},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a6/}
}
TY  - JOUR
AU  - S. G. Merzlyakov
TI  - Cauchy–Hadamard theorem for exponential series
JO  - Ufa mathematical journal
PY  - 2014
SP  - 71
EP  - 79
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a6/
LA  - en
ID  - UFA_2014_6_1_a6
ER  - 
%0 Journal Article
%A S. G. Merzlyakov
%T Cauchy–Hadamard theorem for exponential series
%J Ufa mathematical journal
%D 2014
%P 71-79
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a6/
%G en
%F UFA_2014_6_1_a6
S. G. Merzlyakov. Cauchy–Hadamard theorem for exponential series. Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 71-79. http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a6/

[1] G. Valiron, “Sur l'abscisse de convergence des séries de Diriclet”, Bull. Soc. math. de France, 52 (1924), 166–174 | MR | Zbl

[2] Krivosheeva O. A., “Oblast skhodimosti ryadov eksponentsialnykh monomov”, Ufimsk. matem. zhurn., 3:2 (2011), 43–56 | Zbl

[3] Le Hai Khoi, “Holomorphic Dirichlet series in several variables”, Math. Scand., 77:1 (1995), 85–107 | MR | Zbl

[4] Merzlyakov S. G., “Integraly ot eksponenty po mere Radona”, Ufimsk. matem. zhurn., 3:2 (2011), 57–80 | Zbl

[5] Leontev A. F., Ryady eksponent, Nauka, M., 1976, 536 pp. | MR

[6] Rokafellar R., Vypuklyi analiz, Mir, M., 1973, 470 pp.

[7] Shabat B. V., Vvedenie v kompleksnyi analiz, Chast 2, Nauka, M., 1976, 400 pp. | MR

[8] Burbaki N., Obschaya topologiya. Topologicheskie gruppy. Chisla i svyazannye s nimi gruppy i prostranstva, Nauka, M., 1969, 392 pp. | MR

[9] Dedonne Zh., Osnovy sovremennogo analiza, Mir, M., 1964, 430 pp.