Dynamics of linear operators connected with $\mathrm{su}(1,1)$ algebra
Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 66-70 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the present work we consider a linear continuous operator in a separable Frechet space being one of the generators of Lie algebra $\mathrm{su}(1,1)$. We study the discrete-time dynamical system generated by iteration of this operator. We show that under some additional conditions the operator that generates the indicated dynamical system is frequently hypercyclic and chaotic (in the sense of Devaney). Applications of this result to a study of specific operators are indicated.
Keywords: frequently hypercyclic operator, Lie algebra.
@article{UFA_2014_6_1_a5,
     author = {V. E. Kim},
     title = {Dynamics of linear operators connected with $\mathrm{su}(1,1)$ algebra},
     journal = {Ufa mathematical journal},
     pages = {66--70},
     year = {2014},
     volume = {6},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a5/}
}
TY  - JOUR
AU  - V. E. Kim
TI  - Dynamics of linear operators connected with $\mathrm{su}(1,1)$ algebra
JO  - Ufa mathematical journal
PY  - 2014
SP  - 66
EP  - 70
VL  - 6
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a5/
LA  - en
ID  - UFA_2014_6_1_a5
ER  - 
%0 Journal Article
%A V. E. Kim
%T Dynamics of linear operators connected with $\mathrm{su}(1,1)$ algebra
%J Ufa mathematical journal
%D 2014
%P 66-70
%V 6
%N 1
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a5/
%G en
%F UFA_2014_6_1_a5
V. E. Kim. Dynamics of linear operators connected with $\mathrm{su}(1,1)$ algebra. Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 66-70. http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a5/

[1] R. Devaney, An introduction to chaotic dynamical systems, Addison-Wesley, 1989, 336 pp. | MR | Zbl

[2] M. W. Hirsch, S. Smale, R. Devaney, Differential equations, dynamical systems, and an introduction to chaos, Elsevier, 2004, 417 pp. | MR

[3] Kolesov A. Yu., Rozov N. Kh., “K voprosu ob opredelenii khaosa”, Uspekhi matematicheskikh nauk, 64:4 (2009), 125–172 | DOI | MR | Zbl

[4] G. Godefroy, J. H. Shapiro, “Operators with dense, invariant, cyclic vector manifolds”, J. Funct. Anal., 98:2 (1991), 229–269 | DOI | MR | Zbl

[5] A. Bonilla, K.-G. Grosse-Erdmann, “On a Theorem of Godefroy and Shapiro”, Integral Equations and Operator Theory, 56 (2006), 151–162 | DOI | MR | Zbl

[6] F. Bayart, S. Grivaux, “Frequently hypercyclic operators”, Trans. Amer. Math. Soc., 358 (2006), 5083–5117 | DOI | MR | Zbl

[7] K.-G. Grosse-Erdmann, A. Peris Manguillot, Linear chaos, Springer, 2011, 386 pp. | MR | Zbl

[8] H. Petersson, “Supercyclic and hypercyclic non-convolution operators”, J. Operator Theory, 55:1 (2006), 133–151 | MR

[9] Kim V. E., “Gipertsiklichnost i khaotichnost operatorov obobschennoi svertki, porozhdaemykh operatorami Gelfonda–Leonteva”, Matem. zametki, 85:6 (2009), 849–856 | DOI | MR | Zbl

[10] J. Conejero, V. Muller, “On the universality of multipliers on $H(\mathbb C)$”, J. Approx. Theory, 162 (2010), 1025–1032 | DOI | MR | Zbl

[11] V. E. Kim, “Commutation relations and hypercyclic operators”, Archiv der Mathematik, 99 (2012), 247–253 | DOI | MR | Zbl

[12] Perelomov A. M., “Obobschennye kogerentnye sostoyaniya i nekotorye ikh primeneniya”, Uspekhi fizicheskikh nauk, 123:1 (1977), 23–55 | DOI