Dynamics of linear operators connected with $\mathrm{su}(1,1)$ algebra
Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 66-70

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present work we consider a linear continuous operator in a separable Frechet space being one of the generators of Lie algebra $\mathrm{su}(1,1)$. We study the discrete-time dynamical system generated by iteration of this operator. We show that under some additional conditions the operator that generates the indicated dynamical system is frequently hypercyclic and chaotic (in the sense of Devaney). Applications of this result to a study of specific operators are indicated.
Keywords: frequently hypercyclic operator, Lie algebra.
@article{UFA_2014_6_1_a5,
     author = {V. E. Kim},
     title = {Dynamics of linear operators connected with $\mathrm{su}(1,1)$ algebra},
     journal = {Ufa mathematical journal},
     pages = {66--70},
     publisher = {mathdoc},
     volume = {6},
     number = {1},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a5/}
}
TY  - JOUR
AU  - V. E. Kim
TI  - Dynamics of linear operators connected with $\mathrm{su}(1,1)$ algebra
JO  - Ufa mathematical journal
PY  - 2014
SP  - 66
EP  - 70
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a5/
LA  - en
ID  - UFA_2014_6_1_a5
ER  - 
%0 Journal Article
%A V. E. Kim
%T Dynamics of linear operators connected with $\mathrm{su}(1,1)$ algebra
%J Ufa mathematical journal
%D 2014
%P 66-70
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a5/
%G en
%F UFA_2014_6_1_a5
V. E. Kim. Dynamics of linear operators connected with $\mathrm{su}(1,1)$ algebra. Ufa mathematical journal, Tome 6 (2014) no. 1, pp. 66-70. http://geodesic.mathdoc.fr/item/UFA_2014_6_1_a5/