Unconditional exponential bases in Hilbert spaces
Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 3-15

Voir la notice de l'article provenant de la source Math-Net.Ru

In the present paper, we consider the existence of unconditional exponential bases in general Hilbert spaces $H=H(E)$ consisting of functions defined on some set $E\subset\mathbb C$ and satisfying the following conditions. 1. The norm in the space $H$ is weaker than the uniform norm on $E$, i.e. the following estimate holds for some constant $A$ and for any function $f$ from $H$: $$ \|f\|_H\le A\sup_{z\in E}|f(z)|. $$ 2. The system of exponential functions $\{\exp(\lambda z),\lambda\in\mathbb C\}$ belongs to the subset $H$ and it is complete in $H$. It is proved that unconditional exponential bases cannot be constructed in $H$ unless a certain condition is carried out. Sufficiency of the weakened condition is proved for spaces defined more particularly.
Keywords: series of exponents, unconditional bases, Hilbert space.
@article{UFA_2011_3_1_a0,
     author = {K. P. Isaev and R. S. Yulmukhametov},
     title = {Unconditional exponential bases in {Hilbert} spaces},
     journal = {Ufa mathematical journal},
     pages = {3--15},
     publisher = {mathdoc},
     volume = {3},
     number = {1},
     year = {2011},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a0/}
}
TY  - JOUR
AU  - K. P. Isaev
AU  - R. S. Yulmukhametov
TI  - Unconditional exponential bases in Hilbert spaces
JO  - Ufa mathematical journal
PY  - 2011
SP  - 3
EP  - 15
VL  - 3
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a0/
LA  - en
ID  - UFA_2011_3_1_a0
ER  - 
%0 Journal Article
%A K. P. Isaev
%A R. S. Yulmukhametov
%T Unconditional exponential bases in Hilbert spaces
%J Ufa mathematical journal
%D 2011
%P 3-15
%V 3
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a0/
%G en
%F UFA_2011_3_1_a0
K. P. Isaev; R. S. Yulmukhametov. Unconditional exponential bases in Hilbert spaces. Ufa mathematical journal, Tome 3 (2011) no. 1, pp. 3-15. http://geodesic.mathdoc.fr/item/UFA_2011_3_1_a0/