@article{TVP_2023_68_3_a10,
author = {I. Karatzas and W. Schachermayer},
title = {A weak law of large numbers for dependent random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {619--629},
year = {2023},
volume = {68},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a10/}
}
I. Karatzas; W. Schachermayer. A weak law of large numbers for dependent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 619-629. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a10/
[1] D. J. Aldous, “Limit theorems for subsequences of arbitrarily-dependent sequences of random variables”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 40 (1977), 59–82 | DOI | MR | Zbl
[2] I. Berkes, E. Péter, “Exchangeable random variables and the subsequence principle”, Probab. Theory Related Fields, 73:3 (1986), 395–413 | DOI | MR | Zbl
[3] S. D. Chatterji, “Un principe des sous-suites dans la théorie des probabilités”, Séminaire des probabilités VI (Univ. Strasbourg, 1970–1971), Lecture Notes in Math., 258, Springer, Berlin, 1972, 72–89 | DOI | MR | Zbl | Zbl
[4] S. D. Chatterji, “A subsequence principle in probability theory”, Jahresber. Deutsch. Math.-Verein., 87:3 (1985), 91–107 | MR | Zbl
[5] Kai Lai Chung, A course in probability theory, Probab. Math. Statist., 21, 2nd ed., Academic Press [Harcourt Brace Jovanovich, Publishers], New York–London, 1974, xii+365 pp. | MR | Zbl
[6] C. Dellacherie, P.-A. Meyer, Probabilités et potentiel, Ch. V à VIII. Théorie des martingales, Actualités Sci. Indust., 1385, Publ. Inst. Math. Univ. Strasbourg, XVII, Rev. ed., Hermann, Paris, 1980, xviii+476 pp. | MR | Zbl
[7] R. Durrett, Probability. Theory and examples, Camb. Ser. Stat. Probab. Math., 31, 4th ed., Cambridge Univ. Press, Cambridge, 2010, x+428 pp. | DOI | MR | Zbl
[8] W. Feller, An introduction to probability theory and its applications, v. II, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl
[9] B. V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Company, Inc., Cambridge, MA, 1954, ix+264 pp. | MR | MR | Zbl
[10] A. Khintchine, A. Kolmogoroff, “Über Konvergenz von Reihen, deren Glieder durch den Zufall bestimmt werden”, Matem. sb., 32:4 (1925), 668–677 | Zbl
[11] A. Kolmogoroff, “Über die Summen durch den Zufall bestimmter unabhängiger Größen”, Math. Ann., 99:1 (1928), 309–319 ; “Bemerkungen zu meiner Arbeit “Über die Summen zufälliger Größen””, 102:1 (1930), 484–488 | DOI | MR | Zbl | DOI | MR | Zbl
[12] A. Kolmogoroff, “Sur la loi forte des grandes nombres”, C. R. Acad. Sci. Paris, 191 (1930), 910–912 | Zbl
[13] A. N. Kolmogorov, Osnovnye ponyatiya teorii veroyatnostei, 2-e izd., Nauka, M., 1974, 119 pp. ; A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergeb. Math. Grenzgeb., 2, no. 3, J. Springer, Berlin, 1933, iv+62 pp. ; A. N. Kolmogorov, Foundations of probability theory, Chelsea Publishing Co., New York, 1950, viii+71 с. | MR | Zbl | MR | Zbl | MR | Zbl
[14] J. Komlós, “A generalization of a problem of Steinhaus”, Acta Math. Acad. Sci. Hungar., 18 (1967), 217–229 | DOI | MR | Zbl
[15] A. Lyasoff, Personal communication, 23 May 2022, 2022
[16] Shige Peng, Nonlinear expectations and stochastic calculus under uncertainty. With robust CLT and $G$-Brownian motion, Probab. Theory Stoch. Model., 95, Springer, Berlin, 2019, xiii+212 pp. | DOI | MR | Zbl