A weak law of large numbers for dependent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 619-629
Voir la notice de l'article provenant de la source Math-Net.Ru
Each sequence $f_1,f_2,\dots$ of random variables satisfying $\lim_{M\to \infty}(M\sup_{k\in \mathbf N}\mathbf{P}(|f_k|>M))=0$} contains a subsequence $f_{k_1},f_{k_2},\dots$ which, along with all its subsequences, satisfies the weak law of large numbers $\lim_{N\to\infty}\bigl((1/N) \sum^N_{n=1} f_{k_n}- D_N\bigr)=0$ in probability. Here, $D_N$ is a “corrector” random variable with values in $[-N,N]$ for each $N\in\mathbf{N}$; these correctors are all equal to zero if, in addition, $\lim \inf_{n\to\infty}\mathbf{E}(f^2_n \mathbf{1}_{\{|f_n|\le M\}})=0$ for every $M\in(0,\infty)$.
Keywords:
weak law of large numbers, hereditary convergence, weak convergence, truncation, generalized expectation, nonlinear expectation.
@article{TVP_2023_68_3_a10,
author = {I. Karatzas and W. Schachermayer},
title = {A weak law of large numbers for dependent random variables},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {619--629},
publisher = {mathdoc},
volume = {68},
number = {3},
year = {2023},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a10/}
}
TY - JOUR AU - I. Karatzas AU - W. Schachermayer TI - A weak law of large numbers for dependent random variables JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2023 SP - 619 EP - 629 VL - 68 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a10/ LA - ru ID - TVP_2023_68_3_a10 ER -
I. Karatzas; W. Schachermayer. A weak law of large numbers for dependent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 619-629. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a10/