A weak law of large numbers for dependent random variables
Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 619-629 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Each sequence $f_1,f_2,\dots$ of random variables satisfying $\lim_{M\to \infty}(M\sup_{k\in \mathbf N}\mathbf{P}(|f_k|>M))=0$} contains a subsequence $f_{k_1},f_{k_2},\dots$ which, along with all its subsequences, satisfies the weak law of large numbers $\lim_{N\to\infty}\bigl((1/N) \sum^N_{n=1} f_{k_n}- D_N\bigr)=0$ in probability. Here, $D_N$ is a “corrector” random variable with values in $[-N,N]$ for each $N\in\mathbf{N}$; these correctors are all equal to zero if, in addition, $\lim \inf_{n\to\infty}\mathbf{E}(f^2_n \mathbf{1}_{\{|f_n|\le M\}})=0$ for every $M\in(0,\infty)$.
Keywords: weak law of large numbers, hereditary convergence, weak convergence, truncation, generalized expectation, nonlinear expectation.
@article{TVP_2023_68_3_a10,
     author = {I. Karatzas and W. Schachermayer},
     title = {A weak law of large numbers for dependent random variables},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {619--629},
     year = {2023},
     volume = {68},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a10/}
}
TY  - JOUR
AU  - I. Karatzas
AU  - W. Schachermayer
TI  - A weak law of large numbers for dependent random variables
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2023
SP  - 619
EP  - 629
VL  - 68
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a10/
LA  - ru
ID  - TVP_2023_68_3_a10
ER  - 
%0 Journal Article
%A I. Karatzas
%A W. Schachermayer
%T A weak law of large numbers for dependent random variables
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2023
%P 619-629
%V 68
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a10/
%G ru
%F TVP_2023_68_3_a10
I. Karatzas; W. Schachermayer. A weak law of large numbers for dependent random variables. Teoriâ veroâtnostej i ee primeneniâ, Tome 68 (2023) no. 3, pp. 619-629. http://geodesic.mathdoc.fr/item/TVP_2023_68_3_a10/

[1] D. J. Aldous, “Limit theorems for subsequences of arbitrarily-dependent sequences of random variables”, Z. Wahrscheinlichkeitstheorie und Verw. Gebiete, 40 (1977), 59–82 | DOI | MR | Zbl

[2] I. Berkes, E. Péter, “Exchangeable random variables and the subsequence principle”, Probab. Theory Related Fields, 73:3 (1986), 395–413 | DOI | MR | Zbl

[3] S. D. Chatterji, “Un principe des sous-suites dans la théorie des probabilités”, Séminaire des probabilités VI (Univ. Strasbourg, 1970–1971), Lecture Notes in Math., 258, Springer, Berlin, 1972, 72–89 | DOI | MR | Zbl | Zbl

[4] S. D. Chatterji, “A subsequence principle in probability theory”, Jahresber. Deutsch. Math.-Verein., 87:3 (1985), 91–107 | MR | Zbl

[5] Kai Lai Chung, A course in probability theory, Probab. Math. Statist., 21, 2nd ed., Academic Press [Harcourt Brace Jovanovich, Publishers], New York–London, 1974, xii+365 pp. | MR | Zbl

[6] C. Dellacherie, P.-A. Meyer, Probabilités et potentiel, Ch. V à VIII. Théorie des martingales, Actualités Sci. Indust., 1385, Publ. Inst. Math. Univ. Strasbourg, XVII, Rev. ed., Hermann, Paris, 1980, xviii+476 pp. | MR | Zbl

[7] R. Durrett, Probability. Theory and examples, Camb. Ser. Stat. Probab. Math., 31, 4th ed., Cambridge Univ. Press, Cambridge, 2010, x+428 pp. | DOI | MR | Zbl

[8] W. Feller, An introduction to probability theory and its applications, v. II, 2nd ed., John Wiley Sons, Inc., New York–London–Sydney, 1971, xxiv+669 pp. | MR | MR | Zbl | Zbl

[9] B. V. Gnedenko, A. N. Kolmogorov, Limit distributions for sums of independent random variables, Addison-Wesley Publishing Company, Inc., Cambridge, MA, 1954, ix+264 pp. | MR | MR | Zbl

[10] A. Khintchine, A. Kolmogoroff, “Über Konvergenz von Reihen, deren Glieder durch den Zufall bestimmt werden”, Matem. sb., 32:4 (1925), 668–677 | Zbl

[11] A. Kolmogoroff, “Über die Summen durch den Zufall bestimmter unabhängiger Größen”, Math. Ann., 99:1 (1928), 309–319 ; “Bemerkungen zu meiner Arbeit “Über die Summen zufälliger Größen””, 102:1 (1930), 484–488 | DOI | MR | Zbl | DOI | MR | Zbl

[12] A. Kolmogoroff, “Sur la loi forte des grandes nombres”, C. R. Acad. Sci. Paris, 191 (1930), 910–912 | Zbl

[13] A. N. Kolmogorov, Osnovnye ponyatiya teorii veroyatnostei, 2-e izd., Nauka, M., 1974, 119 pp. ; A. Kolmogoroff, Grundbegriffe der Wahrscheinlichkeitsrechnung, Ergeb. Math. Grenzgeb., 2, no. 3, J. Springer, Berlin, 1933, iv+62 pp. ; A. N. Kolmogorov, Foundations of probability theory, Chelsea Publishing Co., New York, 1950, viii+71 с. | MR | Zbl | MR | Zbl | MR | Zbl

[14] J. Komlós, “A generalization of a problem of Steinhaus”, Acta Math. Acad. Sci. Hungar., 18 (1967), 217–229 | DOI | MR | Zbl

[15] A. Lyasoff, Personal communication, 23 May 2022, 2022

[16] Shige Peng, Nonlinear expectations and stochastic calculus under uncertainty. With robust CLT and $G$-Brownian motion, Probab. Theory Stoch. Model., 95, Springer, Berlin, 2019, xiii+212 pp. | DOI | MR | Zbl