A new solution of Bertrand's paradox
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 199-202 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Bertrand's Paradox is classical in the theory of probability. Its point of contention is the existence of three distinct solutions to a seemingly identical required probability, with each solution obtained through a different method. This paper depicts yet another solution, a novel approach originating from diametric projections of radial vectors. The chords are drawn by joining the head of a radial vector to a fixed diametrical extremity, corresponding to all points between the two diametrical extremities.
Mots-clés : Bertrand's Paradox
Keywords: randomization, radial vectors, diametrical projection.
@article{TVP_2022_67_1_a12,
     author = {P. Kaushik},
     title = {A new solution of {Bertrand's} paradox},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {199--202},
     year = {2022},
     volume = {67},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a12/}
}
TY  - JOUR
AU  - P. Kaushik
TI  - A new solution of Bertrand's paradox
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 199
EP  - 202
VL  - 67
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a12/
LA  - ru
ID  - TVP_2022_67_1_a12
ER  - 
%0 Journal Article
%A P. Kaushik
%T A new solution of Bertrand's paradox
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 199-202
%V 67
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a12/
%G ru
%F TVP_2022_67_1_a12
P. Kaushik. A new solution of Bertrand's paradox. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 199-202. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a12/

[1] J. Bertrand, Calcul des probabilités, Gauthier-Villars, Paris, 1889, lvii+332 pp. | Zbl

[2] A. Drory, “Failure and uses of Jaynes' principle of transformation groups”, Found. Phys., 45:4 (2015), 439–460 | DOI | MR | Zbl

[3] E. T. Jaynes, “The well-posed problem”, Found. Phys., 3:4 (1973), 477–492 | DOI | MR

[4] B. W. Gnedenko, Lehrbuch der Wahrscheinlichkeitsrechnung, Math. Lehrbücher Monogr. I. Abt. Math. Lehrbücher, IX, Akademie-Verlag, Berlin, 1957, xi+387 pp. | MR | MR | Zbl | Zbl