A new solution of Bertrand's paradox
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 199-202

Voir la notice de l'article provenant de la source Math-Net.Ru

Bertrand's Paradox is classical in the theory of probability. Its point of contention is the existence of three distinct solutions to a seemingly identical required probability, with each solution obtained through a different method. This paper depicts yet another solution, a novel approach originating from diametric projections of radial vectors. The chords are drawn by joining the head of a radial vector to a fixed diametrical extremity, corresponding to all points between the two diametrical extremities.
Mots-clés : Bertrand's Paradox
Keywords: randomization, radial vectors, diametrical projection.
@article{TVP_2022_67_1_a12,
     author = {P. Kaushik},
     title = {A new solution of {Bertrand's} paradox},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {199--202},
     publisher = {mathdoc},
     volume = {67},
     number = {1},
     year = {2022},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a12/}
}
TY  - JOUR
AU  - P. Kaushik
TI  - A new solution of Bertrand's paradox
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2022
SP  - 199
EP  - 202
VL  - 67
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a12/
LA  - ru
ID  - TVP_2022_67_1_a12
ER  - 
%0 Journal Article
%A P. Kaushik
%T A new solution of Bertrand's paradox
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2022
%P 199-202
%V 67
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a12/
%G ru
%F TVP_2022_67_1_a12
P. Kaushik. A new solution of Bertrand's paradox. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 199-202. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a12/