A new solution of Bertrand's paradox
Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 199-202
Cet article a éte moissonné depuis la source Math-Net.Ru
Bertrand's Paradox is classical in the theory of probability. Its point of contention is the existence of three distinct solutions to a seemingly identical required probability, with each solution obtained through a different method. This paper depicts yet another solution, a novel approach originating from diametric projections of radial vectors. The chords are drawn by joining the head of a radial vector to a fixed diametrical extremity, corresponding to all points between the two diametrical extremities.
Mots-clés :
Bertrand's Paradox
Keywords: randomization, radial vectors, diametrical projection.
Keywords: randomization, radial vectors, diametrical projection.
@article{TVP_2022_67_1_a12,
author = {P. Kaushik},
title = {A new solution of {Bertrand's} paradox},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {199--202},
year = {2022},
volume = {67},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a12/}
}
P. Kaushik. A new solution of Bertrand's paradox. Teoriâ veroâtnostej i ee primeneniâ, Tome 67 (2022) no. 1, pp. 199-202. http://geodesic.mathdoc.fr/item/TVP_2022_67_1_a12/
[1] J. Bertrand, Calcul des probabilités, Gauthier-Villars, Paris, 1889, lvii+332 pp. | Zbl
[2] A. Drory, “Failure and uses of Jaynes' principle of transformation groups”, Found. Phys., 45:4 (2015), 439–460 | DOI | MR | Zbl
[3] E. T. Jaynes, “The well-posed problem”, Found. Phys., 3:4 (1973), 477–492 | DOI | MR
[4] B. W. Gnedenko, Lehrbuch der Wahrscheinlichkeitsrechnung, Math. Lehrbücher Monogr. I. Abt. Math. Lehrbücher, IX, Akademie-Verlag, Berlin, 1957, xi+387 pp. | MR | MR | Zbl | Zbl