A trajectorial approach to the gradient flow properties of Langevin–Smoluchowski diffusions
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 839-888 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We revisit the variational characterization of conservative diffusion as entropic gradient flow and provide for it a probabilistic interpretation based on stochastic calculus. It was shown by Jordan, Kinderlehrer, and Otto that, for diffusions of Langevin–Smoluchowski type, the Fokker–Planck probability density flow maximizes the rate of relative entropy dissipation, as measured by the distance traveled in the ambient space of probability measures with finite second moments, in terms of the quadratic Wasserstein metric. We obtain novel, stochastic-process versions of these features, valid along almost every trajectory of the diffusive motion in the backwards direction of time, using a very direct perturbation analysis. By averaging our trajectorial results with respect to the underlying measure on path space, we establish the maximal rate of entropy dissipation along the Fokker–Planck flow and measure exactly the deviation from this maximum that corresponds to any given perturbation. A bonus of our trajectorial approach is that it derives the HWI inequality relating relative entropy (H), Wasserstein distance (W), and relative Fisher information (I).
Keywords: relative entropy, Wasserstein distance, Fisher information, gradient flow, time reversal, functional inequalities.
Mots-clés : optimal transport, diffusion processes
@article{TVP_2021_66_4_a10,
     author = {I. Karatzas and W. Schachermayer and B. Tschiderer},
     title = {A trajectorial approach to the gradient flow properties of {Langevin{\textendash}Smoluchowski} diffusions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {839--888},
     year = {2021},
     volume = {66},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a10/}
}
TY  - JOUR
AU  - I. Karatzas
AU  - W. Schachermayer
AU  - B. Tschiderer
TI  - A trajectorial approach to the gradient flow properties of Langevin–Smoluchowski diffusions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2021
SP  - 839
EP  - 888
VL  - 66
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a10/
LA  - ru
ID  - TVP_2021_66_4_a10
ER  - 
%0 Journal Article
%A I. Karatzas
%A W. Schachermayer
%A B. Tschiderer
%T A trajectorial approach to the gradient flow properties of Langevin–Smoluchowski diffusions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2021
%P 839-888
%V 66
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a10/
%G ru
%F TVP_2021_66_4_a10
I. Karatzas; W. Schachermayer; B. Tschiderer. A trajectorial approach to the gradient flow properties of Langevin–Smoluchowski diffusions. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 839-888. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a10/

[1] B. Acciaio, M. Beiglböck, F. Penkner, W. Schachermayer, J. Temme, “A trajectorial interpretation of Doob's martingale inequalities”, Ann. Appl. Probab., 23:4 (2013), 1494–1505 | DOI | MR | Zbl

[2] S. Adams, N. Dirr, M. Peletier, J. Zimmer, “Large deviations and gradient flows”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371:2005 (2013), 20120341, 17 pp. | DOI | MR | Zbl

[3] L. Ambrosio, N. Gigli, “A user's guide to optimal transport”, Modelling and optimisation of flows on networks, Lecture Notes in Math., 2062, Fond. CIME/CIME Found. Subser., Springer, Heidelberg, 2013, 1–155 | DOI | MR

[4] L. Ambrosio, N. Gigli, G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures Math. ETH Zürich, 2nd ed., Birkhäuser Verlag, Basel, 2008, x+334 pp. | DOI | MR | Zbl

[5] L. Bachelier, “Théorie de la spéculation”, Ann. Sci. École Norm. Sup. (3), 17 (1900), 21–86 | DOI | MR | Zbl

[6] L. Bachelier, Louis Bachelier's theory of speculation: the origins of modern finance, Transl. and with comment. by M. Davis A. Etheridge, Princeton Univ. Press, Princeton, 2006, xvi+192 pp. | DOI

[7] D. Bakry, M. Émery, “Diffusions hypercontractives”, Séminaire de probabilités XIX (Univ. Strasbourg, 1983/84), Lecture Notes in Math., 1123, Springer, Berlin, 1985, 177–206 | DOI | MR | Zbl

[8] M. Beiglböck, P. Siorpaes, “Pathwise versions of the Burkholder–Davis–Gundy inequality”, Bernoulli, 21:1 (2015), 360–373 | DOI | MR | Zbl

[9] L. Boltzmann, Vorlesungen über Gastheorie, v. I, Theorie der Gase mit ein-atomigen Molecülen, deren Dimensionen gegen die mittlere Weglänge verschwinden, J. A. Barth, Leipzig, 1896, viii+204 pp. | Zbl

[10] L. Boltzmann, “Ueber die sogenannte $H$-curve”, Math. Ann., 50:2-3 (1898), 325–332 | DOI | MR | Zbl

[11] L. Boltzmann, Vorlesungen über Gastheorie, v. II, Theorie van der Waals'; Gase mit zusammengesetzten Molecülen, Gasdissociation; Schlussbemerkungen, J. A. Barth, Leipzig, 1898, x+265 pp. | Zbl

[12] Y. Brenier, “Polar factorization and monotone rearrangement of vector-valued functions”, Comm. Pure Appl. Math., 44:4 (1991), 375–417 | DOI | MR | Zbl

[13] E. A. Carlen, A. Soffer, “Entropy production by block variable summation and central limit theorems”, Comm. Math. Phys., 140:2 (1991), 339–371 | DOI | MR | Zbl

[14] D. Cordero-Erausquin, “Some applications of mass transport to Gaussian-type inequalities”, Arch. Ration. Mech. Anal., 161:3 (2002), 257–269 | DOI | MR | Zbl

[15] T. M. Cover, J. A. Thomas, Elements of information theory, 2nd ed., Wiley-Interscience [John Wiley Sons], Hoboken, NJ, 2006, xxiv+748 pp. | DOI | MR | Zbl

[16] P. Dai Pra, M. Pavon, “Variational path-integral representations for the density of a diffusion process”, Stochastics Stochastics Rep., 26:4 (1989), 205–226 | DOI | MR | Zbl

[17] M. H. A. Davis, I. Karatzas, “A deterministic approach to optimal stopping”, Probability, statistics and optimization, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley Sons, Chichester, NY, 1994, 455–466 | MR | Zbl

[18] M. Fathi, “A gradient flow approach to large deviations for diffusion processes”, J. Math. Pures Appl. (9), 106:5 (2016), 957–993 | DOI | MR | Zbl

[19] H. Föllmer, “An entropy approach to the time reversal of diffusion processes”, Stochastic differential systems (Marseille–Luminy, 1984), Lect. Notes Control Inf. Sci., 69, Springer, Berlin, 1985, 156–163 | DOI | MR | Zbl

[20] H. Föllmer, “Time reversal on Wiener space”, Stochastic processes — mathematics and physics (Bielefeld, 1984), Lecture Notes in Math., 1158, Springer, Berlin, 1986, 119–129 | DOI | MR | Zbl

[21] H. Föllmer, “Random fields and diffusion processes”, École d'Été de Probabilités de Saint-Flour XV–XVII, 1985–87, Lecture Notes in Math., 1362, Springer, Berlin, Heidelberg, 1988, 101–203 | DOI | MR | Zbl

[22] J. Fontbona, B. Jourdain, “A trajectorial interpretation of the dissipations of entropy and Fisher information for stochastic differential equations”, Ann. Probab., 44:1 (2016), 131–170 | DOI | MR | Zbl

[23] A. Friedman, Stochastic differential equations and applications, v. 1, Probab. Math. Statist. Ser. Monogr. Textb., 28, Academic Press, New York–London, 1975, xiii+231 pp. | DOI | MR | Zbl

[24] C. Gardiner, Stochastic methods. A handbook for the natural and social sciences, Springer Ser. Synergetics, 13, 4th rev. ed., Springer-Verlag, Berlin, 2009, xviii+447 pp. | MR | MR | Zbl | Zbl

[25] I. Gentil, C. Léonard, L. Ripani, “Dynamical aspects of the generalized Schrödinger problem via Otto calculus — a heuristic point of view”, Rev. Mat. Iberoam., 36:4 (2020), 1071–1112 | DOI | MR | Zbl

[26] I. Gentil, C. Léonard, L. Ripani, L. Tamanini, “An entropic interpolation proof of the HWI inequality”, Stochastic Process. Appl., 130:2 (2020), 907–923 | DOI | MR | Zbl

[27] N. Gozlan, C. Léonard, “Transport inequalities. A survey”, Markov Process. Related Fields, 16:4 (2010), 635–736 | MR | Zbl

[28] U. G. Haussmann, {E}. Pardoux, “Time reversal of diffusions”, Ann. Probab., 14:4 (1986), 1188–1205 | DOI | MR | Zbl

[29] O. Johnson, Information theory and the central limit theorem, Imperial College Press, London, 2004, xiv+209 pp. | DOI | MR | Zbl

[30] R. Jordan, D. Kinderlehrer, “An extended variational principle”, Partial differential equations and applications, Lecture Notes in Pure and Appl. Math., 177, Marcel Dekker, New York, 1996, 187–200 | MR | Zbl

[31] R. Jordan, D. Kinderlehrer, F. Otto, “The variational formulation of the Fokker–Planck equation”, SIAM J. Math. Anal., 29:1 (1998), 1–17 | DOI | MR | Zbl

[32] I. Karatzas, C. Kardaras, Portfolio theory and arbitrage: a course in mathematical finance, Grad. Stud. Math., 214, Amer. Math. Soc., Providence, RI, 2021, xv+309 pp.

[33] I. Karatzas, J. Maas, W. Schachermayer, “Trajectorial dissipation and gradient flow for the relative entropy in Markov chains”, Commun. Inf. Syst., 21:4 (2021), 481–536 | DOI | MR | Zbl

[34] I. Karatzas, W. Schachermayer, B. Tschiderer, Trajectorial Otto calculus, 2020, 61 pp., arXiv: 1811.08686

[35] I. Karatzas, S. E. Shreve, Brownian motion and stochastic calculus, Grad. Texts in Math., 113, 2nd ed., Springer-Verlag, New York, 1998, xxiv+470 pp. | DOI | MR | Zbl

[36] A. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104:1 (1931), 415–458 | DOI | MR | Zbl

[37] A. Kolmogoroff, “Zur Umkehrbarkeit der statistischen Naturgesetze”, Math. Ann., 113:1 (1937), 766–772 | DOI | MR | MR | Zbl | Zbl

[38] C. Léonard, “Some properties of path measures”, Séminaire de Probabilités XLVI, Lecture Notes in Math., 2123, Springer, Cham, 2014, 207–230 | DOI | MR | Zbl

[39] C. Léonard, “On the convexity of the entropy along entropic interpolations”, Measure theory in non-smooth spaces, Partial Differ. Equ. Meas. Theory, De Gruyter Open, Warsaw, 2017, 194–242 | DOI | MR | Zbl

[40] P. A. Markowich, C. Villani, “On the trend to equilibrium for the Fokker–Planck equation: an interplay between physics and functional analysis”, VI workshop on partial differential equations, Part II (Rio de Janeiro, 1999), Mat. Contemp., 19 (2000), 1–29, Rio de Janeiro | MR | Zbl

[41] R. J. McCann, “A convexity principle for interacting gases”, Adv. Math., 128:1 (1997), 153–179 | DOI | MR | Zbl

[42] P. A. Meyer, “Sur une transformation du mouvement brownien due à Jeulin et Yor”, Séminaire de Probabilités XXVIII, Lecture Notes in Math., 1583, Springer, Berlin, 1994, 98–101 | DOI | MR | Zbl

[43] E. Nelson, Dynamical theories of Brownian motion, Math. Notes, 2nd ed., Princeton Univ. Press, Princeton, NJ, 2001, 114 pp. | MR | Zbl

[44] F. Otto, “The geometry of dissipative evolution equations: the porous medium equation”, Comm. Partial Differential Equations, 26:1-2 (2001), 101–174 | DOI | MR | Zbl

[45] F. Otto, C. Villani, “Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality”, J. Funct. Anal., 173:2 (2000), 361–400 | DOI | MR | Zbl

[46] É. Pardoux, “Grossissement d'une filtration et retournement du temps d'une diffusion”, Séminaire de Probabilités XX (Univ. Strasbourg, 1984/85), Lecture Notes in Math., 1204, Springer, Berlin, 1986, 48–55 | DOI | MR | Zbl

[47] M. Pavon, “Stochastic control and nonequilibrium thermodynamical systems”, Appl. Math. Optim., 19:1 (1989), 187–202 | DOI | MR | Zbl

[48] H. Risken, The Fokker–Planck equation. Methods of solution and applications, Springer Ser. Synergetics, 18, 2nd ed., Springer-Verlag, Berlin, 1996, xiv+472 pp. | DOI | MR | Zbl

[49] L. C. G. Rogers, “Smooth transition densities for one-dimensional diffusions”, Bull. London Math. Soc., 17:2 (1985), 157–161 | DOI | MR | Zbl

[50] E. Schrödinger, “Über die Umkehrung der Naturgesetze”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1931:8-9 (1931), 144–153 | Zbl

[51] E. Schrödinger, “Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique”, Ann. Inst. H. Poincaré, 2:4 (1932), 269–310 | MR | Zbl

[52] Z. Schuss, “Singular perturbation methods in stochastic differential equations of mathematical physics”, SIAM Rev., 22:2 (1980), 119–155 | DOI | MR | Zbl

[53] A. J. Stam, “Some inequalities satisfied by the quantities of information of Fisher and Shannon”, Information and Control, 2:2 (1959), 101–112 | DOI | MR | Zbl

[54] K.-T. Sturm, “On the geometry of metric measure spaces. I”, Acta Math., 196:1 (2006), 65–131 | DOI | MR | Zbl

[55] K.-T. Sturm, “On the geometry of metric measure spaces. II”, Acta Math., 196:1 (2006), 133–177 | DOI | MR | Zbl

[56] C. Villani, Topics in optimal transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003, xvi+370 pp. | DOI | MR | Zbl

[57] C. Villani, Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009, xxii+973 pp. | DOI | MR | Zbl

[58] D. Williams, Probability with martingales, Cambridge Math. Textbooks, Cambridge Univ. Press, Cambridge, 1991, xvi+251 pp. | DOI | MR | Zbl