A trajectorial approach to the gradient flow properties of Langevin--Smoluchowski diffusions
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 839-888
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We revisit the variational characterization of conservative diffusion as
entropic gradient flow and provide for it a probabilistic interpretation
based on stochastic calculus. It was shown by Jordan, Kinderlehrer, and Otto
that, for diffusions of Langevin–Smoluchowski type, the Fokker–Planck
probability density flow maximizes the rate of relative entropy dissipation,
as measured by the distance traveled in the ambient space of probability
measures with finite second moments, in terms of the quadratic Wasserstein
metric. We obtain novel, stochastic-process versions of these features, valid
along almost every trajectory of the diffusive motion in the backwards
direction of time, using a very direct perturbation analysis. By averaging
our trajectorial results with respect to the underlying measure on path
space, we establish the maximal rate of entropy dissipation along the
Fokker–Planck flow and measure exactly the deviation from this maximum that
corresponds to any given perturbation. A bonus of our trajectorial
approach is that it derives the HWI inequality relating relative entropy (H),
Wasserstein distance (W), and relative Fisher information (I).
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
relative entropy, Wasserstein distance, Fisher information, gradient flow, time reversal, functional inequalities.
Mots-clés : optimal transport, diffusion processes
                    
                  
                
                
                Mots-clés : optimal transport, diffusion processes
@article{TVP_2021_66_4_a10,
     author = {I. Karatzas and W. Schachermayer and B. Tschiderer},
     title = {A trajectorial approach to the gradient flow properties of {Langevin--Smoluchowski} diffusions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {839--888},
     publisher = {mathdoc},
     volume = {66},
     number = {4},
     year = {2021},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a10/}
}
                      
                      
                    TY - JOUR AU - I. Karatzas AU - W. Schachermayer AU - B. Tschiderer TI - A trajectorial approach to the gradient flow properties of Langevin--Smoluchowski diffusions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 839 EP - 888 VL - 66 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a10/ LA - ru ID - TVP_2021_66_4_a10 ER -
%0 Journal Article %A I. Karatzas %A W. Schachermayer %A B. Tschiderer %T A trajectorial approach to the gradient flow properties of Langevin--Smoluchowski diffusions %J Teoriâ veroâtnostej i ee primeneniâ %D 2021 %P 839-888 %V 66 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a10/ %G ru %F TVP_2021_66_4_a10
I. Karatzas; W. Schachermayer; B. Tschiderer. A trajectorial approach to the gradient flow properties of Langevin--Smoluchowski diffusions. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 839-888. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a10/
