Mots-clés : optimal transport, diffusion processes
@article{TVP_2021_66_4_a10,
author = {I. Karatzas and W. Schachermayer and B. Tschiderer},
title = {A trajectorial approach to the gradient flow properties of {Langevin{\textendash}Smoluchowski} diffusions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {839--888},
year = {2021},
volume = {66},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a10/}
}
TY - JOUR AU - I. Karatzas AU - W. Schachermayer AU - B. Tschiderer TI - A trajectorial approach to the gradient flow properties of Langevin–Smoluchowski diffusions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2021 SP - 839 EP - 888 VL - 66 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a10/ LA - ru ID - TVP_2021_66_4_a10 ER -
%0 Journal Article %A I. Karatzas %A W. Schachermayer %A B. Tschiderer %T A trajectorial approach to the gradient flow properties of Langevin–Smoluchowski diffusions %J Teoriâ veroâtnostej i ee primeneniâ %D 2021 %P 839-888 %V 66 %N 4 %U http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a10/ %G ru %F TVP_2021_66_4_a10
I. Karatzas; W. Schachermayer; B. Tschiderer. A trajectorial approach to the gradient flow properties of Langevin–Smoluchowski diffusions. Teoriâ veroâtnostej i ee primeneniâ, Tome 66 (2021) no. 4, pp. 839-888. http://geodesic.mathdoc.fr/item/TVP_2021_66_4_a10/
[1] B. Acciaio, M. Beiglböck, F. Penkner, W. Schachermayer, J. Temme, “A trajectorial interpretation of Doob's martingale inequalities”, Ann. Appl. Probab., 23:4 (2013), 1494–1505 | DOI | MR | Zbl
[2] S. Adams, N. Dirr, M. Peletier, J. Zimmer, “Large deviations and gradient flows”, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci., 371:2005 (2013), 20120341, 17 pp. | DOI | MR | Zbl
[3] L. Ambrosio, N. Gigli, “A user's guide to optimal transport”, Modelling and optimisation of flows on networks, Lecture Notes in Math., 2062, Fond. CIME/CIME Found. Subser., Springer, Heidelberg, 2013, 1–155 | DOI | MR
[4] L. Ambrosio, N. Gigli, G. Savaré, Gradient flows in metric spaces and in the space of probability measures, Lectures Math. ETH Zürich, 2nd ed., Birkhäuser Verlag, Basel, 2008, x+334 pp. | DOI | MR | Zbl
[5] L. Bachelier, “Théorie de la spéculation”, Ann. Sci. École Norm. Sup. (3), 17 (1900), 21–86 | DOI | MR | Zbl
[6] L. Bachelier, Louis Bachelier's theory of speculation: the origins of modern finance, Transl. and with comment. by M. Davis A. Etheridge, Princeton Univ. Press, Princeton, 2006, xvi+192 pp. | DOI
[7] D. Bakry, M. Émery, “Diffusions hypercontractives”, Séminaire de probabilités XIX (Univ. Strasbourg, 1983/84), Lecture Notes in Math., 1123, Springer, Berlin, 1985, 177–206 | DOI | MR | Zbl
[8] M. Beiglböck, P. Siorpaes, “Pathwise versions of the Burkholder–Davis–Gundy inequality”, Bernoulli, 21:1 (2015), 360–373 | DOI | MR | Zbl
[9] L. Boltzmann, Vorlesungen über Gastheorie, v. I, Theorie der Gase mit ein-atomigen Molecülen, deren Dimensionen gegen die mittlere Weglänge verschwinden, J. A. Barth, Leipzig, 1896, viii+204 pp. | Zbl
[10] L. Boltzmann, “Ueber die sogenannte $H$-curve”, Math. Ann., 50:2-3 (1898), 325–332 | DOI | MR | Zbl
[11] L. Boltzmann, Vorlesungen über Gastheorie, v. II, Theorie van der Waals'; Gase mit zusammengesetzten Molecülen, Gasdissociation; Schlussbemerkungen, J. A. Barth, Leipzig, 1898, x+265 pp. | Zbl
[12] Y. Brenier, “Polar factorization and monotone rearrangement of vector-valued functions”, Comm. Pure Appl. Math., 44:4 (1991), 375–417 | DOI | MR | Zbl
[13] E. A. Carlen, A. Soffer, “Entropy production by block variable summation and central limit theorems”, Comm. Math. Phys., 140:2 (1991), 339–371 | DOI | MR | Zbl
[14] D. Cordero-Erausquin, “Some applications of mass transport to Gaussian-type inequalities”, Arch. Ration. Mech. Anal., 161:3 (2002), 257–269 | DOI | MR | Zbl
[15] T. M. Cover, J. A. Thomas, Elements of information theory, 2nd ed., Wiley-Interscience [John Wiley Sons], Hoboken, NJ, 2006, xxiv+748 pp. | DOI | MR | Zbl
[16] P. Dai Pra, M. Pavon, “Variational path-integral representations for the density of a diffusion process”, Stochastics Stochastics Rep., 26:4 (1989), 205–226 | DOI | MR | Zbl
[17] M. H. A. Davis, I. Karatzas, “A deterministic approach to optimal stopping”, Probability, statistics and optimization, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley Sons, Chichester, NY, 1994, 455–466 | MR | Zbl
[18] M. Fathi, “A gradient flow approach to large deviations for diffusion processes”, J. Math. Pures Appl. (9), 106:5 (2016), 957–993 | DOI | MR | Zbl
[19] H. Föllmer, “An entropy approach to the time reversal of diffusion processes”, Stochastic differential systems (Marseille–Luminy, 1984), Lect. Notes Control Inf. Sci., 69, Springer, Berlin, 1985, 156–163 | DOI | MR | Zbl
[20] H. Föllmer, “Time reversal on Wiener space”, Stochastic processes — mathematics and physics (Bielefeld, 1984), Lecture Notes in Math., 1158, Springer, Berlin, 1986, 119–129 | DOI | MR | Zbl
[21] H. Föllmer, “Random fields and diffusion processes”, École d'Été de Probabilités de Saint-Flour XV–XVII, 1985–87, Lecture Notes in Math., 1362, Springer, Berlin, Heidelberg, 1988, 101–203 | DOI | MR | Zbl
[22] J. Fontbona, B. Jourdain, “A trajectorial interpretation of the dissipations of entropy and Fisher information for stochastic differential equations”, Ann. Probab., 44:1 (2016), 131–170 | DOI | MR | Zbl
[23] A. Friedman, Stochastic differential equations and applications, v. 1, Probab. Math. Statist. Ser. Monogr. Textb., 28, Academic Press, New York–London, 1975, xiii+231 pp. | DOI | MR | Zbl
[24] C. Gardiner, Stochastic methods. A handbook for the natural and social sciences, Springer Ser. Synergetics, 13, 4th rev. ed., Springer-Verlag, Berlin, 2009, xviii+447 pp. | MR | MR | Zbl | Zbl
[25] I. Gentil, C. Léonard, L. Ripani, “Dynamical aspects of the generalized Schrödinger problem via Otto calculus — a heuristic point of view”, Rev. Mat. Iberoam., 36:4 (2020), 1071–1112 | DOI | MR | Zbl
[26] I. Gentil, C. Léonard, L. Ripani, L. Tamanini, “An entropic interpolation proof of the HWI inequality”, Stochastic Process. Appl., 130:2 (2020), 907–923 | DOI | MR | Zbl
[27] N. Gozlan, C. Léonard, “Transport inequalities. A survey”, Markov Process. Related Fields, 16:4 (2010), 635–736 | MR | Zbl
[28] U. G. Haussmann, {E}. Pardoux, “Time reversal of diffusions”, Ann. Probab., 14:4 (1986), 1188–1205 | DOI | MR | Zbl
[29] O. Johnson, Information theory and the central limit theorem, Imperial College Press, London, 2004, xiv+209 pp. | DOI | MR | Zbl
[30] R. Jordan, D. Kinderlehrer, “An extended variational principle”, Partial differential equations and applications, Lecture Notes in Pure and Appl. Math., 177, Marcel Dekker, New York, 1996, 187–200 | MR | Zbl
[31] R. Jordan, D. Kinderlehrer, F. Otto, “The variational formulation of the Fokker–Planck equation”, SIAM J. Math. Anal., 29:1 (1998), 1–17 | DOI | MR | Zbl
[32] I. Karatzas, C. Kardaras, Portfolio theory and arbitrage: a course in mathematical finance, Grad. Stud. Math., 214, Amer. Math. Soc., Providence, RI, 2021, xv+309 pp.
[33] I. Karatzas, J. Maas, W. Schachermayer, “Trajectorial dissipation and gradient flow for the relative entropy in Markov chains”, Commun. Inf. Syst., 21:4 (2021), 481–536 | DOI | MR | Zbl
[34] I. Karatzas, W. Schachermayer, B. Tschiderer, Trajectorial Otto calculus, 2020, 61 pp., arXiv: 1811.08686
[35] I. Karatzas, S. E. Shreve, Brownian motion and stochastic calculus, Grad. Texts in Math., 113, 2nd ed., Springer-Verlag, New York, 1998, xxiv+470 pp. | DOI | MR | Zbl
[36] A. Kolmogoroff, “Über die analytischen Methoden in der Wahrscheinlichkeitsrechnung”, Math. Ann., 104:1 (1931), 415–458 | DOI | MR | Zbl
[37] A. Kolmogoroff, “Zur Umkehrbarkeit der statistischen Naturgesetze”, Math. Ann., 113:1 (1937), 766–772 | DOI | MR | MR | Zbl | Zbl
[38] C. Léonard, “Some properties of path measures”, Séminaire de Probabilités XLVI, Lecture Notes in Math., 2123, Springer, Cham, 2014, 207–230 | DOI | MR | Zbl
[39] C. Léonard, “On the convexity of the entropy along entropic interpolations”, Measure theory in non-smooth spaces, Partial Differ. Equ. Meas. Theory, De Gruyter Open, Warsaw, 2017, 194–242 | DOI | MR | Zbl
[40] P. A. Markowich, C. Villani, “On the trend to equilibrium for the Fokker–Planck equation: an interplay between physics and functional analysis”, VI workshop on partial differential equations, Part II (Rio de Janeiro, 1999), Mat. Contemp., 19 (2000), 1–29, Rio de Janeiro | MR | Zbl
[41] R. J. McCann, “A convexity principle for interacting gases”, Adv. Math., 128:1 (1997), 153–179 | DOI | MR | Zbl
[42] P. A. Meyer, “Sur une transformation du mouvement brownien due à Jeulin et Yor”, Séminaire de Probabilités XXVIII, Lecture Notes in Math., 1583, Springer, Berlin, 1994, 98–101 | DOI | MR | Zbl
[43] E. Nelson, Dynamical theories of Brownian motion, Math. Notes, 2nd ed., Princeton Univ. Press, Princeton, NJ, 2001, 114 pp. | MR | Zbl
[44] F. Otto, “The geometry of dissipative evolution equations: the porous medium equation”, Comm. Partial Differential Equations, 26:1-2 (2001), 101–174 | DOI | MR | Zbl
[45] F. Otto, C. Villani, “Generalization of an inequality by Talagrand and links with the logarithmic Sobolev inequality”, J. Funct. Anal., 173:2 (2000), 361–400 | DOI | MR | Zbl
[46] É. Pardoux, “Grossissement d'une filtration et retournement du temps d'une diffusion”, Séminaire de Probabilités XX (Univ. Strasbourg, 1984/85), Lecture Notes in Math., 1204, Springer, Berlin, 1986, 48–55 | DOI | MR | Zbl
[47] M. Pavon, “Stochastic control and nonequilibrium thermodynamical systems”, Appl. Math. Optim., 19:1 (1989), 187–202 | DOI | MR | Zbl
[48] H. Risken, The Fokker–Planck equation. Methods of solution and applications, Springer Ser. Synergetics, 18, 2nd ed., Springer-Verlag, Berlin, 1996, xiv+472 pp. | DOI | MR | Zbl
[49] L. C. G. Rogers, “Smooth transition densities for one-dimensional diffusions”, Bull. London Math. Soc., 17:2 (1985), 157–161 | DOI | MR | Zbl
[50] E. Schrödinger, “Über die Umkehrung der Naturgesetze”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1931:8-9 (1931), 144–153 | Zbl
[51] E. Schrödinger, “Sur la théorie relativiste de l'électron et l'interprétation de la mécanique quantique”, Ann. Inst. H. Poincaré, 2:4 (1932), 269–310 | MR | Zbl
[52] Z. Schuss, “Singular perturbation methods in stochastic differential equations of mathematical physics”, SIAM Rev., 22:2 (1980), 119–155 | DOI | MR | Zbl
[53] A. J. Stam, “Some inequalities satisfied by the quantities of information of Fisher and Shannon”, Information and Control, 2:2 (1959), 101–112 | DOI | MR | Zbl
[54] K.-T. Sturm, “On the geometry of metric measure spaces. I”, Acta Math., 196:1 (2006), 65–131 | DOI | MR | Zbl
[55] K.-T. Sturm, “On the geometry of metric measure spaces. II”, Acta Math., 196:1 (2006), 133–177 | DOI | MR | Zbl
[56] C. Villani, Topics in optimal transportation, Grad. Stud. Math., 58, Amer. Math. Soc., Providence, RI, 2003, xvi+370 pp. | DOI | MR | Zbl
[57] C. Villani, Optimal transport. Old and new, Grundlehren Math. Wiss., 338, Springer-Verlag, Berlin, 2009, xxii+973 pp. | DOI | MR | Zbl
[58] D. Williams, Probability with martingales, Cambridge Math. Textbooks, Cambridge Univ. Press, Cambridge, 1991, xvi+251 pp. | DOI | MR | Zbl