Weighted Poisson--Delaunay mosaics
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 746-770
Voir la notice de l'article provenant de la source Math-Net.Ru
Slicing a Voronoi tessellation in $\mathbf{R}^n$ with a $k$-plane gives
a $k$-dimensional weighted Voronoi tessellation, also known as a power diagram
or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay
mosaic to the radius of the smallest empty circumscribed sphere whose center
lies in the $k$-plane gives a generalized discrete Morse function. Assuming the
Voronoi tessellation is generated by a Poisson point process in $\mathbf{R}^n$,
we study the expected number of simplices in the $k$-dimensional weighted
Delaunay mosaic as well as the expected number of intervals of the Morse
function, both as functions of a radius threshold. As a by-product, we obtain
a new proof for the expected number of connected components (clumps) in
a line section of a circular Boolean model in $\mathbf{R}^n$.
Mots-clés :
Voronoi tessellations, Laguerre distance, Poisson point process
Keywords: weighted Delaunay mosaics, discrete Morse theory, critical simplices, intervals, stochastic geometry, Boolean model, clumps, Slivnyak–Mecke formula, Blaschke–Petkantschin formula.
Keywords: weighted Delaunay mosaics, discrete Morse theory, critical simplices, intervals, stochastic geometry, Boolean model, clumps, Slivnyak–Mecke formula, Blaschke–Petkantschin formula.
@article{TVP_2019_64_4_a6,
author = {H. Edelsbrunner and A. Nikitenko},
title = {Weighted {Poisson--Delaunay} mosaics},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {746--770},
publisher = {mathdoc},
volume = {64},
number = {4},
year = {2019},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a6/}
}
H. Edelsbrunner; A. Nikitenko. Weighted Poisson--Delaunay mosaics. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 746-770. http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a6/