Weighted Poisson--Delaunay mosaics
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 746-770

Voir la notice de l'article provenant de la source Math-Net.Ru

Slicing a Voronoi tessellation in $\mathbf{R}^n$ with a $k$-plane gives a $k$-dimensional weighted Voronoi tessellation, also known as a power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of the smallest empty circumscribed sphere whose center lies in the $k$-plane gives a generalized discrete Morse function. Assuming the Voronoi tessellation is generated by a Poisson point process in $\mathbf{R}^n$, we study the expected number of simplices in the $k$-dimensional weighted Delaunay mosaic as well as the expected number of intervals of the Morse function, both as functions of a radius threshold. As a by-product, we obtain a new proof for the expected number of connected components (clumps) in a line section of a circular Boolean model in $\mathbf{R}^n$.
Mots-clés : Voronoi tessellations, Laguerre distance, Poisson point process
Keywords: weighted Delaunay mosaics, discrete Morse theory, critical simplices, intervals, stochastic geometry, Boolean model, clumps, Slivnyak–Mecke formula, Blaschke–Petkantschin formula.
@article{TVP_2019_64_4_a6,
     author = {H. Edelsbrunner and A. Nikitenko},
     title = {Weighted {Poisson--Delaunay} mosaics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {746--770},
     publisher = {mathdoc},
     volume = {64},
     number = {4},
     year = {2019},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a6/}
}
TY  - JOUR
AU  - H. Edelsbrunner
AU  - A. Nikitenko
TI  - Weighted Poisson--Delaunay mosaics
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 746
EP  - 770
VL  - 64
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a6/
LA  - ru
ID  - TVP_2019_64_4_a6
ER  - 
%0 Journal Article
%A H. Edelsbrunner
%A A. Nikitenko
%T Weighted Poisson--Delaunay mosaics
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 746-770
%V 64
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a6/
%G ru
%F TVP_2019_64_4_a6
H. Edelsbrunner; A. Nikitenko. Weighted Poisson--Delaunay mosaics. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 746-770. http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a6/