Keywords: weighted Delaunay mosaics, discrete Morse theory, critical simplices, intervals, stochastic geometry, Boolean model, clumps, Slivnyak–Mecke formula, Blaschke–Petkantschin formula.
@article{TVP_2019_64_4_a6,
author = {H. Edelsbrunner and A. Nikitenko},
title = {Weighted {Poisson{\textendash}Delaunay} mosaics},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {746--770},
year = {2019},
volume = {64},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a6/}
}
H. Edelsbrunner; A. Nikitenko. Weighted Poisson–Delaunay mosaics. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 746-770. http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a6/
[1] F. Aurenhammer, “Power diagrams: properties, algorithms, and applications”, SIAM J. Comput., 16:1 (1987), 78–96 | DOI | MR | Zbl
[2] F. Aurenhammer, H. Imai, “Geometric relations among Voronoi diagrams”, Geom. Dedicata, 27 (1988), 65–75 | DOI | MR | Zbl
[3] U. Bauer, H. Edelsbrunner, “The Morse theory of Čech and Delaunay complexes”, Trans. Amer. Math. Soc., 369:5 (2017), 3741–3762 | DOI | MR | Zbl
[4] L. Burtseva, F. Werner, B. Valdez, A. Pestriakov, R. Romero, V. Petranovskii, “Tessellation methods for modeling the material structure”, Appl. Mech. Mater., 756 (2015), 426–435 | DOI
[5] H. Edelsbrunner, Geometry and topology for mesh generation, Cambridge Monogr. Appl. Comput. Math., 7, Cambridge Univ. Press, Cambridge, 2001, xii+177 pp. | DOI | MR | Zbl
[6] H. Edelsbrunner, J. L. Harer, Computational topology. An introduction, Amer. Math. Soc., Providence, RI, 2010, xii+241 pp. | MR | Zbl
[7] H. Edelsbrunner, A. Nikitenko, M. Reitzner, “Expected sizes of Poisson–Delaunay mosaics and their discrete Morse functions”, Adv. in Appl. Probab., 49:3 (2017), 745–767 | DOI | MR | Zbl
[8] R. Forman, “Morse theory for cell complexes”, Adv. Math., 134:1 (1998), 90–145 | DOI | MR | Zbl
[9] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., 1994, x+523 pp. | DOI | MR | Zbl
[10] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Grundlehren Math. Wiss., 93, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957, xiii+312 pp. | MR | MR | Zbl | Zbl
[11] P. Hall, Introduction to the theory of coverage processes, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley Sons, Inc., New York, 1988, xx+408 pp. | MR | Zbl
[12] C. Lautensack, Random Laguerre tessellations, Ph.D. thesis, Math. Dept., Univ. Karlsruhe, Karlsruhe, 2007
[13] C. Lautensack, S. Zuyev, “Random Laguerre tessellations”, Adv. in Appl. Probab., 40:3 (2008), 630–650 | DOI | MR | Zbl
[14] R. E. Miles, “On the homogeneous planar Poisson point process”, Math. Biosci., 6 (1970), 85–127 | DOI | MR | Zbl
[15] R. E. Miles, “Isotropic random simplices”, Adv. in Appl. Probab., 3:2 (1971), 353–382 | DOI | MR | Zbl
[16] J. Møller, “Random tessellations in $\mathbb{R}^d$”, Adv. in Appl. Probab., 21:1 (1989), 37–73 | DOI | MR | Zbl
[17] A. Okabe, B. Boots, K. Sugihara, Sung Nok Chui, Spatial tessellations: concepts and applications of Voronoi diagrams, Wiley Ser. Probab. Stat., 2nd ed., John Wiley Sons, Ltd., Chichester, 2000, xvi+671 pp. | DOI | MR | Zbl
[18] NIST handbook of mathematical functions, eds. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp. | MR | Zbl
[19] N. Prunet, E. M. Meyerowitz, “Genetics and plant development”, C. R. Biologies, 339:7-8 (2016), 240–246 | DOI
[20] R. Schneider, W. Weil, Stochastic and integral geometry, Probab. Appl. (N. Y.), Springer-Verlag, Berlin, 2008, xii+693 pp. | DOI | MR | Zbl
[21] R. Sibson, “A vector identity for the Dirichlet tessellation”, Math. Proc. Cambridge Philos. Soc., 87:1 (1980), 151–155 | DOI | MR | Zbl
[22] C. Walck, Hand-book on statistical distributions for experimentalists, Internal Report SUF-PFY/96-01, Stockholm Univ., Stockholm, 1996, 190 pp.
[23] J. G. Wendel, “A problem in geometric probability”, Math. Scand., 11 (1962), 109–111 | DOI | MR | Zbl