Weighted Poisson–Delaunay mosaics
Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 746-770 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Slicing a Voronoi tessellation in $\mathbf{R}^n$ with a $k$-plane gives a $k$-dimensional weighted Voronoi tessellation, also known as a power diagram or Laguerre tessellation. Mapping every simplex of the dual weighted Delaunay mosaic to the radius of the smallest empty circumscribed sphere whose center lies in the $k$-plane gives a generalized discrete Morse function. Assuming the Voronoi tessellation is generated by a Poisson point process in $\mathbf{R}^n$, we study the expected number of simplices in the $k$-dimensional weighted Delaunay mosaic as well as the expected number of intervals of the Morse function, both as functions of a radius threshold. As a by-product, we obtain a new proof for the expected number of connected components (clumps) in a line section of a circular Boolean model in $\mathbf{R}^n$.
Mots-clés : Voronoi tessellations, Laguerre distance, Poisson point process
Keywords: weighted Delaunay mosaics, discrete Morse theory, critical simplices, intervals, stochastic geometry, Boolean model, clumps, Slivnyak–Mecke formula, Blaschke–Petkantschin formula.
@article{TVP_2019_64_4_a6,
     author = {H. Edelsbrunner and A. Nikitenko},
     title = {Weighted {Poisson{\textendash}Delaunay} mosaics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {746--770},
     year = {2019},
     volume = {64},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a6/}
}
TY  - JOUR
AU  - H. Edelsbrunner
AU  - A. Nikitenko
TI  - Weighted Poisson–Delaunay mosaics
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2019
SP  - 746
EP  - 770
VL  - 64
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a6/
LA  - ru
ID  - TVP_2019_64_4_a6
ER  - 
%0 Journal Article
%A H. Edelsbrunner
%A A. Nikitenko
%T Weighted Poisson–Delaunay mosaics
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2019
%P 746-770
%V 64
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a6/
%G ru
%F TVP_2019_64_4_a6
H. Edelsbrunner; A. Nikitenko. Weighted Poisson–Delaunay mosaics. Teoriâ veroâtnostej i ee primeneniâ, Tome 64 (2019) no. 4, pp. 746-770. http://geodesic.mathdoc.fr/item/TVP_2019_64_4_a6/

[1] F. Aurenhammer, “Power diagrams: properties, algorithms, and applications”, SIAM J. Comput., 16:1 (1987), 78–96 | DOI | MR | Zbl

[2] F. Aurenhammer, H. Imai, “Geometric relations among Voronoi diagrams”, Geom. Dedicata, 27 (1988), 65–75 | DOI | MR | Zbl

[3] U. Bauer, H. Edelsbrunner, “The Morse theory of Čech and Delaunay complexes”, Trans. Amer. Math. Soc., 369:5 (2017), 3741–3762 | DOI | MR | Zbl

[4] L. Burtseva, F. Werner, B. Valdez, A. Pestriakov, R. Romero, V. Petranovskii, “Tessellation methods for modeling the material structure”, Appl. Mech. Mater., 756 (2015), 426–435 | DOI

[5] H. Edelsbrunner, Geometry and topology for mesh generation, Cambridge Monogr. Appl. Comput. Math., 7, Cambridge Univ. Press, Cambridge, 2001, xii+177 pp. | DOI | MR | Zbl

[6] H. Edelsbrunner, J. L. Harer, Computational topology. An introduction, Amer. Math. Soc., Providence, RI, 2010, xii+241 pp. | MR | Zbl

[7] H. Edelsbrunner, A. Nikitenko, M. Reitzner, “Expected sizes of Poisson–Delaunay mosaics and their discrete Morse functions”, Adv. in Appl. Probab., 49:3 (2017), 745–767 | DOI | MR | Zbl

[8] R. Forman, “Morse theory for cell complexes”, Adv. Math., 134:1 (1998), 90–145 | DOI | MR | Zbl

[9] I. M. Gelfand, M. M. Kapranov, A. V. Zelevinsky, Discriminants, resultants, and multidimensional determinants, Math. Theory Appl., Birkhäuser Boston, Inc., 1994, x+523 pp. | DOI | MR | Zbl

[10] H. Hadwiger, Vorlesungen über Inhalt, Oberfläche und Isoperimetrie, Grundlehren Math. Wiss., 93, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1957, xiii+312 pp. | MR | MR | Zbl | Zbl

[11] P. Hall, Introduction to the theory of coverage processes, Wiley Ser. Probab. Math. Statist. Probab. Math. Statist., John Wiley Sons, Inc., New York, 1988, xx+408 pp. | MR | Zbl

[12] C. Lautensack, Random Laguerre tessellations, Ph.D. thesis, Math. Dept., Univ. Karlsruhe, Karlsruhe, 2007

[13] C. Lautensack, S. Zuyev, “Random Laguerre tessellations”, Adv. in Appl. Probab., 40:3 (2008), 630–650 | DOI | MR | Zbl

[14] R. E. Miles, “On the homogeneous planar Poisson point process”, Math. Biosci., 6 (1970), 85–127 | DOI | MR | Zbl

[15] R. E. Miles, “Isotropic random simplices”, Adv. in Appl. Probab., 3:2 (1971), 353–382 | DOI | MR | Zbl

[16] J. Møller, “Random tessellations in $\mathbb{R}^d$”, Adv. in Appl. Probab., 21:1 (1989), 37–73 | DOI | MR | Zbl

[17] A. Okabe, B. Boots, K. Sugihara, Sung Nok Chui, Spatial tessellations: concepts and applications of Voronoi diagrams, Wiley Ser. Probab. Stat., 2nd ed., John Wiley Sons, Ltd., Chichester, 2000, xvi+671 pp. | DOI | MR | Zbl

[18] NIST handbook of mathematical functions, eds. F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, U.S. Department of Commerce, National Institute of Standards and Technology, Washington, DC; Cambridge Univ. Press, Cambridge, 2010, xvi+951 pp. | MR | Zbl

[19] N. Prunet, E. M. Meyerowitz, “Genetics and plant development”, C. R. Biologies, 339:7-8 (2016), 240–246 | DOI

[20] R. Schneider, W. Weil, Stochastic and integral geometry, Probab. Appl. (N. Y.), Springer-Verlag, Berlin, 2008, xii+693 pp. | DOI | MR | Zbl

[21] R. Sibson, “A vector identity for the Dirichlet tessellation”, Math. Proc. Cambridge Philos. Soc., 87:1 (1980), 151–155 | DOI | MR | Zbl

[22] C. Walck, Hand-book on statistical distributions for experimentalists, Internal Report SUF-PFY/96-01, Stockholm Univ., Stockholm, 1996, 190 pp.

[23] J. G. Wendel, “A problem in geometric probability”, Math. Scand., 11 (1962), 109–111 | DOI | MR | Zbl