Discrimination of close hypotheses about the distribution tails using higher order statistics
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 447-467
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the problem of discrimination of close hypotheses about
the distribution tails lying in the Gumbel maximum domain of
attraction. Only higher order statistics of the sample are used for
constructing the test. The proposed results extend
classical results of the contiguity theory.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
close hypotheses, order statistics, Gumbel maximum domain of attraction, discrimination test.
                    
                  
                
                
                @article{TVP_2018_63_3_a2,
     author = {I. V. Rodionov},
     title = {Discrimination of close hypotheses about the distribution tails using higher order statistics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {447--467},
     publisher = {mathdoc},
     volume = {63},
     number = {3},
     year = {2018},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a2/}
}
                      
                      
                    TY - JOUR AU - I. V. Rodionov TI - Discrimination of close hypotheses about the distribution tails using higher order statistics JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 447 EP - 467 VL - 63 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a2/ LA - ru ID - TVP_2018_63_3_a2 ER -
I. V. Rodionov. Discrimination of close hypotheses about the distribution tails using higher order statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 447-467. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a2/
