Discrimination of close hypotheses about the distribution tails using higher order statistics
Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 447-467 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider the problem of discrimination of close hypotheses about the distribution tails lying in the Gumbel maximum domain of attraction. Only higher order statistics of the sample are used for constructing the test. The proposed results extend classical results of the contiguity theory.
Keywords: close hypotheses, order statistics, Gumbel maximum domain of attraction, discrimination test.
@article{TVP_2018_63_3_a2,
     author = {I. V. Rodionov},
     title = {Discrimination of close hypotheses about the distribution tails using higher order statistics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {447--467},
     year = {2018},
     volume = {63},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a2/}
}
TY  - JOUR
AU  - I. V. Rodionov
TI  - Discrimination of close hypotheses about the distribution tails using higher order statistics
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2018
SP  - 447
EP  - 467
VL  - 63
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a2/
LA  - ru
ID  - TVP_2018_63_3_a2
ER  - 
%0 Journal Article
%A I. V. Rodionov
%T Discrimination of close hypotheses about the distribution tails using higher order statistics
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2018
%P 447-467
%V 63
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a2/
%G ru
%F TVP_2018_63_3_a2
I. V. Rodionov. Discrimination of close hypotheses about the distribution tails using higher order statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 447-467. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a2/

[1] A. V. Bernshtein, “On asymptotically complete classes of tests in the problem of verification of composite hypotheses under contiguous alternatives”, Theory Probab. Appl., 30:1 (1986), 87–102 | DOI | MR | Zbl

[2] P. Billingsley, Convergence of probability measures, Wiley Ser. Probab. Statist. Probab. Statist., 2nd ed., John Wiley Sons, Inc., New York, 1999, x+277 pp. ; P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 351 pp. | DOI | MR | Zbl | MR

[3] A. A. Borovkov, Mathematical statistics, Gordon Breach Science Publishers, Amsterdam, 1998, xxii+570 pp. | MR | MR | Zbl | Zbl

[4] D. M. Chibisov, “Asimptoticheskie razlozheniya v zadachakh proverki gipotez. II”, Izv. AN UzSSR. Ser. fiz.-matem. nauk, 1982, no. 6, 23–30 | MR | Zbl

[5] D. M. Chibisov, “Lektsii po asimptoticheskoi teorii rangovykh kriteriev”, Lekts. kursy NOTs, 14, MIAN, M., 2009, 3–174 | DOI | Zbl

[6] L. de Haan, A. Ferreira, Extreme value theory. An introduction, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2006, xviii+417 pp. | DOI | MR | Zbl

[7] A. K. Dey, D. Kundu, “Discriminating between the Weibull and log-normal distributions for Type-II censored data”, Statistics, 46:2 (2012), 197–214 | DOI | MR | Zbl

[8] P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling extremal events for insurance and finance, Appl. Math. (N. Y.), 33, Springer-Verlag, Berlin, 1997, xvi+645 pp. | DOI | MR | Zbl

[9] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977, 368 pp. | MR | Zbl

[10] I. Fraga Alves, L. de Haan, C. Neves, “A test procedure for detecting super-heavy tails”, J. Statist. Plann. Inference, 138:2 (2009), 213–227 | DOI | MR | Zbl

[11] J. Galambos, E. Seneta, “Regularly varying sequences”, Proc. Amer. Math. Soc., 41:1 (1973), 110–116 | DOI | MR | Zbl

[12] L. Gardes, S. Girard, A. Guillou, “Weibull tail-distributions revisited: a new look at some tail estimators”, J. Statist. Plann. Inference, 141:1 (2011), 429–444 | DOI | MR | Zbl

[13] R. D. Gupta, D. Kundu, “Discriminating between Weibull and generalized exponential distributions”, Comput. Statist. Data Anal., 43:2 (2003), 179–196 | DOI | MR | Zbl

[14] R. D. Gupta, D. Kundu, A. Manglick, Probability of correct selection of Gamma versus GE or Weibull versus GE based on likelihood ratio test, Tech. rep., Univ. of New Brunswick, Saint John, 2001

[15] J. Hájek, Z. Šidák, Theory of rank tests, Academic Press, New York–London; Academia, Publishing House of the Czechoslovak Academy of Sciences, Prague, 1967, 297 pp. | Zbl

[16] D. Kundu, M. Z. Raqab, “Discriminating between the generalized Rayleigh and log-normal distribution”, Statistics, 41:6 (2007), 505–515 | DOI | MR | Zbl

[17] L. Le Cam, “Locally asymptotically normal families of distributions. Certain approximations to families of distributions and their use in the theory of estimation and testing hypotheses”, Univ. California Publ. Statist., 3 (1960), 37–98 | MR | Zbl

[18] R. Sh. Liptser, F. Pukel'sheim, A. N. Shiryaev, “Necessary and sufficient conditions for contiguity and entire asymptotic separation of probability measures”, Russian Math. Surveys, 37:6 (1982), 107–136 | DOI | MR | Zbl

[19] I. V. Rodionov, Statisticheskii analiz i proverka gipotez o raspredeleniyakh ekstremumov vremennogo ryada, Diss. ... kand. fiz.-matem. nauk, MGU im. M. V. Lomonosova, M., 2014

[20] I. Rodionov, Discrimination between close hypotheses about Weibull and log-Weibull type distributions using higher order statistics, 2016, arXiv: 1606.08628

[21] I. V. Rodionov, “Kriterii razlicheniya khvostov raspredelenii tipa Veibulla”, Teoriya veroyatn. i ee primen., 63:2 (2018), 402–413 | DOI

[22] I. V. Rodionov, “On discrimination between classes of distribution tails”, Problems Inform. Transmission, 54:2 (2018), 124–138 | DOI

[23] G. G. Roussas, Contiguity of probability measures: some applications in statistics, Cambridge Tracts in Math. and Math. Phys., 63, Cambridge Univ. Press, London–New York, 1972, xiii+248 pp. | MR | Zbl