@article{TVP_2018_63_3_a2,
author = {I. V. Rodionov},
title = {Discrimination of close hypotheses about the distribution tails using higher order statistics},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {447--467},
year = {2018},
volume = {63},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a2/}
}
TY - JOUR AU - I. V. Rodionov TI - Discrimination of close hypotheses about the distribution tails using higher order statistics JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2018 SP - 447 EP - 467 VL - 63 IS - 3 UR - http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a2/ LA - ru ID - TVP_2018_63_3_a2 ER -
I. V. Rodionov. Discrimination of close hypotheses about the distribution tails using higher order statistics. Teoriâ veroâtnostej i ee primeneniâ, Tome 63 (2018) no. 3, pp. 447-467. http://geodesic.mathdoc.fr/item/TVP_2018_63_3_a2/
[1] A. V. Bernshtein, “On asymptotically complete classes of tests in the problem of verification of composite hypotheses under contiguous alternatives”, Theory Probab. Appl., 30:1 (1986), 87–102 | DOI | MR | Zbl
[2] P. Billingsley, Convergence of probability measures, Wiley Ser. Probab. Statist. Probab. Statist., 2nd ed., John Wiley Sons, Inc., New York, 1999, x+277 pp. ; P. Billingsli, Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 351 pp. | DOI | MR | Zbl | MR
[3] A. A. Borovkov, Mathematical statistics, Gordon Breach Science Publishers, Amsterdam, 1998, xxii+570 pp. | MR | MR | Zbl | Zbl
[4] D. M. Chibisov, “Asimptoticheskie razlozheniya v zadachakh proverki gipotez. II”, Izv. AN UzSSR. Ser. fiz.-matem. nauk, 1982, no. 6, 23–30 | MR | Zbl
[5] D. M. Chibisov, “Lektsii po asimptoticheskoi teorii rangovykh kriteriev”, Lekts. kursy NOTs, 14, MIAN, M., 2009, 3–174 | DOI | Zbl
[6] L. de Haan, A. Ferreira, Extreme value theory. An introduction, Springer Ser. Oper. Res. Financ. Eng., Springer, New York, 2006, xviii+417 pp. | DOI | MR | Zbl
[7] A. K. Dey, D. Kundu, “Discriminating between the Weibull and log-normal distributions for Type-II censored data”, Statistics, 46:2 (2012), 197–214 | DOI | MR | Zbl
[8] P. Embrechts, C. Klüppelberg, T. Mikosch, Modelling extremal events for insurance and finance, Appl. Math. (N. Y.), 33, Springer-Verlag, Berlin, 1997, xvi+645 pp. | DOI | MR | Zbl
[9] M. V. Fedoryuk, Metod perevala, Nauka, M., 1977, 368 pp. | MR | Zbl
[10] I. Fraga Alves, L. de Haan, C. Neves, “A test procedure for detecting super-heavy tails”, J. Statist. Plann. Inference, 138:2 (2009), 213–227 | DOI | MR | Zbl
[11] J. Galambos, E. Seneta, “Regularly varying sequences”, Proc. Amer. Math. Soc., 41:1 (1973), 110–116 | DOI | MR | Zbl
[12] L. Gardes, S. Girard, A. Guillou, “Weibull tail-distributions revisited: a new look at some tail estimators”, J. Statist. Plann. Inference, 141:1 (2011), 429–444 | DOI | MR | Zbl
[13] R. D. Gupta, D. Kundu, “Discriminating between Weibull and generalized exponential distributions”, Comput. Statist. Data Anal., 43:2 (2003), 179–196 | DOI | MR | Zbl
[14] R. D. Gupta, D. Kundu, A. Manglick, Probability of correct selection of Gamma versus GE or Weibull versus GE based on likelihood ratio test, Tech. rep., Univ. of New Brunswick, Saint John, 2001
[15] J. Hájek, Z. Šidák, Theory of rank tests, Academic Press, New York–London; Academia, Publishing House of the Czechoslovak Academy of Sciences, Prague, 1967, 297 pp. | Zbl
[16] D. Kundu, M. Z. Raqab, “Discriminating between the generalized Rayleigh and log-normal distribution”, Statistics, 41:6 (2007), 505–515 | DOI | MR | Zbl
[17] L. Le Cam, “Locally asymptotically normal families of distributions. Certain approximations to families of distributions and their use in the theory of estimation and testing hypotheses”, Univ. California Publ. Statist., 3 (1960), 37–98 | MR | Zbl
[18] R. Sh. Liptser, F. Pukel'sheim, A. N. Shiryaev, “Necessary and sufficient conditions for contiguity and entire asymptotic separation of probability measures”, Russian Math. Surveys, 37:6 (1982), 107–136 | DOI | MR | Zbl
[19] I. V. Rodionov, Statisticheskii analiz i proverka gipotez o raspredeleniyakh ekstremumov vremennogo ryada, Diss. ... kand. fiz.-matem. nauk, MGU im. M. V. Lomonosova, M., 2014
[20] I. Rodionov, Discrimination between close hypotheses about Weibull and log-Weibull type distributions using higher order statistics, 2016, arXiv: 1606.08628
[21] I. V. Rodionov, “Kriterii razlicheniya khvostov raspredelenii tipa Veibulla”, Teoriya veroyatn. i ee primen., 63:2 (2018), 402–413 | DOI
[22] I. V. Rodionov, “On discrimination between classes of distribution tails”, Problems Inform. Transmission, 54:2 (2018), 124–138 | DOI
[23] G. G. Roussas, Contiguity of probability measures: some applications in statistics, Cambridge Tracts in Math. and Math. Phys., 63, Cambridge Univ. Press, London–New York, 1972, xiii+248 pp. | MR | Zbl