Mots-clés : Carleman condition
@article{TVP_2017_62_4_a7,
author = {K. V. Lykov},
title = {Any random variable with finite moments is a sum of two variables with determinate moment problem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {787--797},
year = {2017},
volume = {62},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a7/}
}
TY - JOUR AU - K. V. Lykov TI - Any random variable with finite moments is a sum of two variables with determinate moment problem JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2017 SP - 787 EP - 797 VL - 62 IS - 4 UR - http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a7/ LA - ru ID - TVP_2017_62_4_a7 ER -
K. V. Lykov. Any random variable with finite moments is a sum of two variables with determinate moment problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 787-797. http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a7/
[1] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp. | MR | Zbl
[2] V. I. Bogachev, Measure theory, v. II, Springer-Verlag, Berlin, 2007, xiv+575 pp. | DOI | MR | Zbl
[3] N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965, x+253 pp. | MR | MR | Zbl | Zbl
[4] A. N. Shiryaev, Probability–1, Grad. Texts in Math., 95, 3rd ed., Springer, New York, 2016, xvii+486 pp. | DOI | MR | Zbl
[5] J. M. Stoyanov, Counterexamples in probability, 3rd ed., Dover Publications, New York, 2013, xxx+368 pp. | MR | Zbl | Zbl
[6] H. Hamburger, “Über eine Erweiterung des Stieltjesschen Momentenproblems”, Math. Ann., 82:1-2 (1920), 120–164 | DOI | MR | Zbl
[7] C. C. Heyde, “Some remarks on the moment problem. I”, Quart. J. Math. Oxford Ser. (2), 14:1 (1963), 91–96 | DOI | MR | Zbl
[8] C. Berg, “The cube of a normal distribution is indeterminate”, Ann. Probab., 16:2 (1988), 910–913 | DOI | MR | Zbl
[9] M. de Jeu, “Determinate multidimensional measures, the extended Carleman theorem and quasi-analytic weights”, Ann. Probab., 31:3 (2003), 1205–1227 | DOI | MR | Zbl
[10] K. V. Lykov, “New uniqueness conditions for the classical moment problem”, Math. Notes, 92:6 (2012), 797–806 | DOI | DOI | MR | Zbl
[11] R. San Juan, “Sur le problème de Watson dans la théorie des séries asymptotiques et solution d'un problème de Carleman de la théorie des fonctions quasianalytiques”, Acta Math., 75:1 (1942), 247–254 | DOI | MR | Zbl
[12] C. Berg, “On the preservation of determinacy under convolution”, Proc. Amer. Math. Soc., 93:2 (1985), 351–357 | DOI | MR | Zbl
[13] E. Hewitt, K. Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Grad. Texts in Math., 25, Springer-Verlag, New York–Heidelberg, 1975, x+476 pp. | MR | Zbl
[14] M. de Jeu, “Subspaces with equal closure”, Constr. Approx., 20:1 (2004), 93–157 | DOI | MR | Zbl
[15] B. Simon, “The classical moment problem as a self-adjoint finite difference operator”, Adv. Math., 137:1 (1998), 82–203 | DOI | MR | Zbl
[16] A. Devinatz, “On a theorem of Lévy–Raikov”, Ann. Math. Statist., 30:2 (1959), 583–586 | DOI | MR | Zbl
[17] S. Astashkin, K. Lykov, “Extrapolation description of rearrangement invariant spaces and related problems”, Banach and function spaces III (ISBFS 2009), Yokohama Publ., Yokohama, 2011, 1–52 | MR | Zbl