Any random variable with finite moments is a sum of two variables with determinate moment problem
Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 787-797 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that two random variables may have equal moments of all orders but unequal distributions. If, for a given random variable, there does not exist a differently distributed random variable with the same moments, then the original random variable is said to have determinate moment problem, or one says that the moment problem has a unique solution. It is shown that any random variable such that all its moments are finite can be represented as a sum of two disjoint variables, and each of them has determinate moment problem.
Keywords: Hamburger moment problem, mixture of distributions, Orlicz space.
Mots-clés : Carleman condition
@article{TVP_2017_62_4_a7,
     author = {K. V. Lykov},
     title = {Any random variable with finite moments is a sum of two variables with determinate moment problem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {787--797},
     year = {2017},
     volume = {62},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a7/}
}
TY  - JOUR
AU  - K. V. Lykov
TI  - Any random variable with finite moments is a sum of two variables with determinate moment problem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2017
SP  - 787
EP  - 797
VL  - 62
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a7/
LA  - ru
ID  - TVP_2017_62_4_a7
ER  - 
%0 Journal Article
%A K. V. Lykov
%T Any random variable with finite moments is a sum of two variables with determinate moment problem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2017
%P 787-797
%V 62
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a7/
%G ru
%F TVP_2017_62_4_a7
K. V. Lykov. Any random variable with finite moments is a sum of two variables with determinate moment problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 62 (2017) no. 4, pp. 787-797. http://geodesic.mathdoc.fr/item/TVP_2017_62_4_a7/

[1] C. Bennett, R. Sharpley, Interpolation of operators, Pure Appl. Math., 129, Academic Press, Inc., Boston, MA, 1988, xiv+469 pp. | MR | Zbl

[2] V. I. Bogachev, Measure theory, v. II, Springer-Verlag, Berlin, 2007, xiv+575 pp. | DOI | MR | Zbl

[3] N. I. Akhiezer, The classical moment problem and some related questions in analysis, Hafner Publishing Co., New York, 1965, x+253 pp. | MR | MR | Zbl | Zbl

[4] A. N. Shiryaev, Probability–1, Grad. Texts in Math., 95, 3rd ed., Springer, New York, 2016, xvii+486 pp. | DOI | MR | Zbl

[5] J. M. Stoyanov, Counterexamples in probability, 3rd ed., Dover Publications, New York, 2013, xxx+368 pp. | MR | Zbl | Zbl

[6] H. Hamburger, “Über eine Erweiterung des Stieltjesschen Momentenproblems”, Math. Ann., 82:1-2 (1920), 120–164 | DOI | MR | Zbl

[7] C. C. Heyde, “Some remarks on the moment problem. I”, Quart. J. Math. Oxford Ser. (2), 14:1 (1963), 91–96 | DOI | MR | Zbl

[8] C. Berg, “The cube of a normal distribution is indeterminate”, Ann. Probab., 16:2 (1988), 910–913 | DOI | MR | Zbl

[9] M. de Jeu, “Determinate multidimensional measures, the extended Carleman theorem and quasi-analytic weights”, Ann. Probab., 31:3 (2003), 1205–1227 | DOI | MR | Zbl

[10] K. V. Lykov, “New uniqueness conditions for the classical moment problem”, Math. Notes, 92:6 (2012), 797–806 | DOI | DOI | MR | Zbl

[11] R. San Juan, “Sur le problème de Watson dans la théorie des séries asymptotiques et solution d'un problème de Carleman de la théorie des fonctions quasianalytiques”, Acta Math., 75:1 (1942), 247–254 | DOI | MR | Zbl

[12] C. Berg, “On the preservation of determinacy under convolution”, Proc. Amer. Math. Soc., 93:2 (1985), 351–357 | DOI | MR | Zbl

[13] E. Hewitt, K. Stromberg, Real and abstract analysis. A modern treatment of the theory of functions of a real variable, Grad. Texts in Math., 25, Springer-Verlag, New York–Heidelberg, 1975, x+476 pp. | MR | Zbl

[14] M. de Jeu, “Subspaces with equal closure”, Constr. Approx., 20:1 (2004), 93–157 | DOI | MR | Zbl

[15] B. Simon, “The classical moment problem as a self-adjoint finite difference operator”, Adv. Math., 137:1 (1998), 82–203 | DOI | MR | Zbl

[16] A. Devinatz, “On a theorem of Lévy–Raikov”, Ann. Math. Statist., 30:2 (1959), 583–586 | DOI | MR | Zbl

[17] S. Astashkin, K. Lykov, “Extrapolation description of rearrangement invariant spaces and related problems”, Banach and function spaces III (ISBFS 2009), Yokohama Publ., Yokohama, 2011, 1–52 | MR | Zbl