Binomial-$\chi^2$ vector random fields
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 547-562 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce a new class of non-Gaussian vector random fields in space and/or time, which are termed binomial-$\chi^2$ vector random fields and include $\chi^2$ vector random fields as special cases. We define a binomial-$\chi^2$ vector random field as a binomial sum of squares of independent Gaussian vector random fields on a spatial, temporal, or spatio-temporal index domain. This is a second-order vector random field and has an interesting feature in that its finite-dimensional Laplace transforms are not determined by its own covariance matrix function, but rather by that of the underlying Gaussian one. We study the basic properties of binomial-$\chi^2$ vector random fields and derive some direct/cross covariances, which are based on the bivariate normal density, distribution, and related functions, for elliptically contoured and binomial-$\chi^2$ vector random fields.
Keywords: $\chi^2$ vector random fields, Gaussian vector random fields, elliptically contoured vector random fields, covariance matrix function.
@article{TVP_2016_61_3_a5,
     author = {Ch. Ma},
     title = {Binomial-$\chi^2$ vector random fields},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {547--562},
     year = {2016},
     volume = {61},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a5/}
}
TY  - JOUR
AU  - Ch. Ma
TI  - Binomial-$\chi^2$ vector random fields
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 547
EP  - 562
VL  - 61
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a5/
LA  - en
ID  - TVP_2016_61_3_a5
ER  - 
%0 Journal Article
%A Ch. Ma
%T Binomial-$\chi^2$ vector random fields
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 547-562
%V 61
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a5/
%G en
%F TVP_2016_61_3_a5
Ch. Ma. Binomial-$\chi^2$ vector random fields. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 3, pp. 547-562. http://geodesic.mathdoc.fr/item/TVP_2016_61_3_a5/

[1] Adler R. J., “The net charge process for interacting, signed diffusions”, Ann. Probab., 18:2 (1990), 602–625 | DOI | MR | Zbl

[2] Baddour K. E., Beaulieu N. C., “Accurate simulation of multiple cross-correlated Rician fading channels”, IEEE Trans. Communications, 52:11 (2004), 1980–1987 | DOI

[3] Kramer G., Matematicheskie metody statistiki, Mir, M., 1975, 648 pp.

[4] Kramer G., Lidbetter M., Statsionarnye sluchainye protsessy: Svoistva vyborochnykh funktsii i ikh prilozheniya, Mir, M., 1969, 398 pp.

[5] Du J., Ma C., “Spherically invariant vector random fields in space and time”, IEEE Trans. Signal Processing, 59:12 (2011), 5921–5929 | DOI | MR

[6] Feller V., Vvedenie v teoriyu veroyatnostei i ee primeneniya, v. 2, Mir, M., 1984, 752 pp.

[7] Gikhman I. N., Skorokhod A. V., Vvedenie v teoriyu sluchainykh protsessov, Nauka, M., 1965, 655 pp.

[8] Gikhman I. N., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 1, Nauka, M., 1971, 664 pp.

[9] Khennan E., Mnogomernye vremennye ryady, Mir, M., 1974, 575 pp.

[10] Ibragimov I. A., Rozanov Yu. A., Gaussovskie sluchainye protsessy, Nauka, M., 1970, 384 pp.

[11] Kay S. M., Fundamentals of Statistical Signal Processing, v. 1, Estimation Theory; v. 2, Detection Theory, Prentice Hall, Englewood Cliffs, 1993

[12] Letac G., Wesolowski J., “Laplace transforms which are negative powers of quadratic polynomials”, Trans. Amer. Math. Soc., 360:12 (2008), 6475–6496 | DOI | MR | Zbl

[13] Lifshits M. A., Gaussovskie sluchainye funktsii, TViMS, Kiev, 1995, 246 pp.

[14] Lindgren G., Lindgren F., “Stochastic asymmetry properties of 3D Gauss–Lagrange ocean waves with directional spreading”, Stochastic Models, 27:3 (2011), 490–520 | DOI | MR | Zbl

[15] Ma C., “$\chi^2$ random fields in space and time”, IEEE Trans. Signal Processing, 58 (2010), 378–383 | DOI | MR

[16] Ma C., “Vector random fields with second-order moments or second-order increments”, Stoch. Anal. Appl., 29:2 (2011), 197–215 | DOI | MR | Zbl

[17] Ma C., “Covariance matrices for second-order vector random fields in space and time”, IEEE Trans. Signal Processing, 59:5 (2011), 2160–2168 | DOI | MR

[18] Ma C., “Covariance matrix functions of vector $\chi^2$ random fields in space and time”, IEEE Trans. Communications, 59:9 (2011), 2554–2561 | DOI

[19] Ma C., “Vector random fields with long range dependence”, Fractals, 19:2 (2011), 249–258 | DOI | MR | Zbl

[20] Ma C., “$K$-distributed vector random fields in space and time”, Statist. Probab. Lett., 83:4 (2013), 1143–1150 | DOI | MR | Zbl

[21] Proakis J., Salehi M., Digital Communications, McGraw Hill, New York, 2007, 1150 pp.

[22] Schlather M., “Some covariance models based on normal scale mixtures”, Bernoulli, 16:3 (2010), 780–797 | DOI | MR | Zbl

[23] Simon M. K., Alouini M.-S., Digital Communication Over Fading Channels, Wiley, New York, 2004

[24] Sorooshyari S., Daut D. G., “On the generation of correlated Rayleigh fading envelopes for accurate simulation of diversity channels”, IEEE Trans. Communications, 56:8 (2006), 1381–1386 | DOI

[25] Vershik A. M., “Neskolko kharakteristicheskikh svoistv gaussovskikh sluchainykh protsessov”, Teoriya veroyatn. i ee primen., 9:2 (1964), 390–394 | MR

[26] Ward K. D., Tough R. J. A., Watts S., Sea Clutter: Scattering, the K Distribution and Radar Performance, Radar, Sonar Navigation The Institution of Engineering and Technology, 13, 2013, 561 pp.

[27] Widder D. V., The Laplace Transform, Princeton Univ. Press, Princeton, 1941, 406 pp. | MR

[28] Yaglom A. M., Korrelyatsionnaya teoriya statsionarnykh sluchainykh funktsii, Gidrometeoizdat, L., 1981, 280 pp.