Random permutations with prime lengths of cycles
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 365-377 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A set of $n$th order permutations with prime lengths of cycles is considered. An asymptotic estimate for the number of all such permutations is obtained as $n\to\infty.$ Given a uniform distribution on the set of such permutations of order $n$, a local limit theorem is proved, evaluating the distribution of the number of cycles $\nu_n$ in a permutation selected at random. This theorem implies, in particular, that the random variable $\nu_n$ is asymptotically normal with parameters ($\log\log n$, $\log\log n$) as $n\to\infty$. It is shown that the random variable $\nu_n(p)$, the number of cycles of a fixed length $p$ in such a permutation ($p$ is a prime number), has in the limit a Poisson distribution with parameter ${1}/{p}.$ Assuming that a permutation of order $n$ is selected in accordance with the uniform distribution from the set of all such permutations with prime cycle lengths, each of which has exactly $N$ cycles $(1\le N\le[{n}/{2}]),$ limit theorems are proved, evaluating the distribution of the random variable $\mu_p(n, N),$ the number of cycles of prime length $p$ in this permutation. The results mentioned are established by means of the asymptotic law for the distribution of prime numbers and the saddle-point method as well as the generalized allocation scheme.
@article{TVP_2016_61_2_a7,
     author = {A. N. Timashev},
     title = {Random permutations with prime lengths of cycles},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {365--377},
     year = {2016},
     volume = {61},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a7/}
}
TY  - JOUR
AU  - A. N. Timashev
TI  - Random permutations with prime lengths of cycles
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 365
EP  - 377
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a7/
LA  - ru
ID  - TVP_2016_61_2_a7
ER  - 
%0 Journal Article
%A A. N. Timashev
%T Random permutations with prime lengths of cycles
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 365-377
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a7/
%G ru
%F TVP_2016_61_2_a7
A. N. Timashev. Random permutations with prime lengths of cycles. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 365-377. http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a7/

[1] Goncharov V. L., “Iz oblasti kombinatoriki”, Izv. AN SSSR, 8:1 (1944), 3–48 | MR | Zbl

[2] Kolchin V. F., Sluchainye grafy, Fizmatlit, M., 2000, 255 pp.

[3] Yakymiv A. L., Veroyatnostnye prilozheniya tauberovykh teorem, Fizmatlit, M., 2005, 256 pp.

[4] Bender E. A., “Asimptoticheskie metody v teorii perechislenii”, Perechislitelnye zadachi kombinatornogo analiza, Mir, M., 1979, 266–310

[5] Timashev A. N., “Sluchainye podstanovki s dlinami tsiklov iz zadannogo konechnogo mnozhestva”, Diskret. matem., 20:1 (2008), 25–37 | DOI | Zbl

[6] Kolchin V. F., Sluchainye otobrazheniya, Nauka, M., 1984, 206 pp.

[7] Timashev A. N., Asimptoticheskie razlozheniya v veroyatnostnoi kombinatorike, TVP, M., 2011, 312 pp.

[8] Prakhar K., Raspredelenie prostykh chisel, Mir, M., 1967, 511 pp.