Linear stochastic differential equation in the Banach space
Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 348-364 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A linear stochastic differential equation in an arbitrary separable Banach space is considered. To solve this equation, the corresponding linear stochastic differential equation for generalized random processes is constructed and its solution is produced as a generalized Itô process. The conditions under which the received generalized random process is the Itô process in a Banach space are found, and thus the solution of the considered linear stochastic differential equation is obtained. The heart of this approach is the conversion of the main equation in a Banach space to the equation for generalized random processes, to find the generalized solution, and then to learn the conditions under which the obtained generalized random process is the random process with values in a Banach space.
@article{TVP_2016_61_2_a6,
     author = {B. Mamporia},
     title = {Linear stochastic differential equation in the {Banach} space},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {348--364},
     year = {2016},
     volume = {61},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a6/}
}
TY  - JOUR
AU  - B. Mamporia
TI  - Linear stochastic differential equation in the Banach space
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2016
SP  - 348
EP  - 364
VL  - 61
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a6/
LA  - ru
ID  - TVP_2016_61_2_a6
ER  - 
%0 Journal Article
%A B. Mamporia
%T Linear stochastic differential equation in the Banach space
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2016
%P 348-364
%V 61
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a6/
%G ru
%F TVP_2016_61_2_a6
B. Mamporia. Linear stochastic differential equation in the Banach space. Teoriâ veroâtnostej i ee primeneniâ, Tome 61 (2016) no. 2, pp. 348-364. http://geodesic.mathdoc.fr/item/TVP_2016_61_2_a6/

[1] Brzeźniak Z., van Neerven J. M. A. M., Veraar M. C., Weis L., “Itô's formula in UMD Banach spaces and regularity of solutions of the Zakai equation”, J. Differential Equations, 245:1 (2008), 30–58 | DOI | MR | Zbl

[2] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Veroyatnostnye raspredeleniya v banakhovykh prostranstvakh, Nauka, M., 1985, 386 pp.

[3] Khille E., Fillips R., Funktsionalnyi analiz i polugruppy, IL, M., 1962, 829 pp.

[4] Mamporia B. I., Wiener processes and stochastic integrals on a Banach space, 7:1 (1986), 59–75 | MR | Zbl

[5] Mamporia B. I., “On the existence and uniqueness of a solution to a stochastic differential equation in a Banach space”, Georgian Math. J., 11:3 (2004), 515–526 | MR | Zbl

[6] Mamporiya B. I., “Stokhasticheskoe differentsialnoe uravnenie dlya obobschennykh sluchainykh protsessov v banakhovom prostranstve”, Teoriya veroyatn. i ee primen., 56:4 (2011), 704–725 | DOI

[7] Mamporia B. I., “Itô's formula in a Banach space”, Bull. Georgian Natl. Acad. Sci., 5:3 (2011), 11–16 | MR | Zbl

[8] McConnell T. R., “Decoupling and stochastic integration in UMD Banach spaces”, Probab. Math. Statist., 10:2 (1989), 283–295 | MR | Zbl

[9] van Neerven J. M. A. M., Weis L., “Stochastic integration of operator-valued functions with respect to Banach space-valued Brownian motion”, Potential Anal., 29:1 (2008), 65–88 | DOI | MR | Zbl

[10] Pisier G., “Martingales with values in uniformly convex spaces”, Israel J. Math., 20 (1975), 326–350 | DOI | MR | Zbl

[11] Rosiński J., Suchanecki Z., “On the space of vector-valued functions integrable with respect to the white noise”, Colloq. Math., 43:1 (1980), 183–201 | MR | Zbl

[12] Rozovskii B. L., Evolyutsionnye stokhasticheskie sistemy, Nauka, M., 1983, 208 pp.

[13] Schwartz L., Applications $p$-radonifiantes, Séminaire L. Schwartz, 11–12, 1969/70

[14] Yang W. Zh., Tsai T.-M., “Itô's integration on 2-smooth Banach space”, Chinese J. Math., 11 (1983), 193–206 | MR | Zbl