Diagonally canonical and related Gaussian random elements
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 282-297
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We call a Gaussian random element $\eta$ in a Banach space $X$ with a Schauder basis $\mathbf{e}=(e_n)$ diagonally canonical (for short, $D$-canonical) with respect to $\mathbf{e}$ if the distribution of $\eta$ coincides with the distribution of a random element having the form $B\xi$, where $\xi$ is a Gaussian random element in $X$, whose $\mathbf{e}$-components are stochastically independent and $B:X\to X$ is a continuous linear mapping. In this paper we show that if $X=l_p$, $1\leqq p\infty$ and $p\ne2$, or $X=c_0$, then there exists a Gaussian random element $\eta$ in $X$, which is not $D$-canonical with respect to the natural basis of $X$. We derive this result in the case when $X=l_p$, $2$, or $X=c_0$ from the following statement, an analogue which was known earlier only for Banach spaces without an unconditional Schauder basis: if $X=l_p$, $2$, or $X=c_0$, then there exists a Gaussian random element $\eta$ in $X$ such that the distribution of $\eta$ does not coincide with the distribution of the sum of almost surely convergent in $X$ series $\sum_{n=1}^\infty x_ng_n$, where $(x_n)$ is an unconditionally summable sequence of elements of $X$ and $(g_n)$ is a sequence of stochastically independent standard Gaussian random variables.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
diagonally canonical gaussian random element; unconditionally canonical gaussian random element; gaussian covariance operator; cotype of Banach spaces; r-nuclear operator; summing operator; Gaussian average property; $gl_2$-Banach space.
                    
                  
                
                
                @article{TVP_2013_58_2_a4,
     author = {V. V. Kvaratskhelia and V. I. Tarieladze},
     title = {Diagonally canonical and related {Gaussian} random elements},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {282--297},
     publisher = {mathdoc},
     volume = {58},
     number = {2},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a4/}
}
                      
                      
                    TY - JOUR AU - V. V. Kvaratskhelia AU - V. I. Tarieladze TI - Diagonally canonical and related Gaussian random elements JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2013 SP - 282 EP - 297 VL - 58 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a4/ LA - ru ID - TVP_2013_58_2_a4 ER -
V. V. Kvaratskhelia; V. I. Tarieladze. Diagonally canonical and related Gaussian random elements. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 282-297. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a4/
