, or $X=c_0$ from the following statement, an analogue which was known earlier only for Banach spaces without an unconditional Schauder basis: if $X=l_p$, $2 , or $X=c_0$, then there exists a Gaussian random element $\eta$ in $X$ such that the distribution of $\eta$ does not coincide with the distribution of the sum of almost surely convergent in $X$ series $\sum_{n=1}^\infty x_ng_n$, where $(x_n)$ is an unconditionally summable sequence of elements of $X$ and $(g_n)$ is a sequence of stochastically independent standard Gaussian random variables.
@article{TVP_2013_58_2_a4,
author = {V. V. Kvaratskhelia and V. I. Tarieladze},
title = {Diagonally canonical and related {Gaussian} random elements},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {282--297},
year = {2013},
volume = {58},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a4/}
}
V. V. Kvaratskhelia; V. I. Tarieladze. Diagonally canonical and related Gaussian random elements. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 282-297. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a4/
[1] Vakhaniya N. N., “O normalnykh raspredeleniyakh v prostranstve $ l_{p}$”, Teoriya veroyatn. i ee primen., 9:4 (1964), 737–738 | MR | Zbl
[2] Vakhania N. N., “Sur les répartitions de probabilités dans les espaces de suites numériques”, C. R. Acad. Sci. Paris, 260:5 (1965), 1560–1562 | MR | Zbl
[3] Vakhaniya N. N., “Kovariatsionnyi operator veroyatnostnogo raspredeleniya v prostranstve Banakha”, Soobsch. AN GSSR, 51:1 (1968), 35–40 | MR | Zbl
[4] Vakhania N. N., Probability Distributions in Linear Spaces, North-Holland, New York–Oxford, 1981, 123 pp. | MR | Zbl
[5] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Probability Distributions on Banach Spaces, Reidel, Dordrecht, 1987, 482 pp. | MR | Zbl
[6] Kühn T., Linde W., “The $ r$-nuclearity $ (0\leq 1)$ of Gaussian covariances”, Math. Nachr., 95 (1980), 165–175 | DOI | MR | Zbl
[7] Kühn T., “On the $ r$-nuclearity of Gaussian covariances and the composition of nuclear operators”, Math. Ann., 262 (1983), 377–381 | DOI | MR
[8] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. I, Sequence Spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1977, 190 pp. | MR | Zbl
[9] Diestel J., Jarchow H., Tonge A., Absolutely summing operators, Cambridge Univ. Press, Cambridge, 1995, 474 pp. | MR | Zbl
[10] Kvaratskhelia V. V., “On unconditional convergence of random series in Banach spaces”, Lecture Notes in Math., 828, 1980, 162–166 | DOI | MR | Zbl
[11] Kwapień S., Tarieladze V., “On a.s. unconditional convergence of random series in Banach spaces”, Stochastic Inequalities and Applications (Barcelona, 2002), Progr. Probab., 56, Birkhäuser, Basel, 2003, 71–75 | MR | Zbl
[12] Kwapień S., Szymański B., “Some remarks on Gaussian measures in Banach spaces”, Probab. Math. Statist., 1, 1980, 59–65 | MR | Zbl
[13] Gordon Y., Lewis D. R., “Absolutely summing operators and local unconditional structures”, Acta Math., 133 (1974), 27–48 | DOI | MR | Zbl
[14] Casazza P. G., Nielsen N. J., “A Gaussian average property of Banach spaces”, Illinois J. Math., 41:4 (1997), 559–576 | MR | Zbl
[15] Chobanjan S. A., Tarieladze V. I., “Gaussian characterizations of certain Banach spaces”, J. Multivariate Anal., 7 (1977), 183–203 | DOI | MR | Zbl
[16] Johnson W. B., “Homogeneous Banach spaces”, Lecture Notes in Math., 1317, 1988, 201–203 | DOI | MR | Zbl
[17] Milman V. D., Pisier G., “Banach spaces with a weak cotype 2 property”, Israel J. Math., 54 (1986), 139–158 | DOI | MR | Zbl
[18] Pisier G., The volume of convex bodies and Banach space geometry, Cambridge Univ. Press, Cambridge, 1989, 250 pp. | MR | Zbl
[19] Talagrand M., “Regularity of Gaussian processes”, Acta Math., 159:1–2 (1987), 99–149 | DOI | MR | Zbl