Diagonally canonical and related Gaussian random elements
Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 282-297 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We call a Gaussian random element $\eta$ in a Banach space $X$ with a Schauder basis $\mathbf{e}=(e_n)$ diagonally canonical (for short, $D$-canonical) with respect to $\mathbf{e}$ if the distribution of $\eta$ coincides with the distribution of a random element having the form $B\xi$, where $\xi$ is a Gaussian random element in $X$, whose $\mathbf{e}$-components are stochastically independent and $B:X\to X$ is a continuous linear mapping. In this paper we show that if $X=l_p$, $1\leqq p<\infty$ and $p\ne2$, or $X=c_0$, then there exists a Gaussian random element $\eta$ in $X$, which is not $D$-canonical with respect to the natural basis of $X$. We derive this result in the case when $X=l_p$, $2, or $X=c_0$ from the following statement, an analogue which was known earlier only for Banach spaces without an unconditional Schauder basis: if $X=l_p$, $2, or $X=c_0$, then there exists a Gaussian random element $\eta$ in $X$ such that the distribution of $\eta$ does not coincide with the distribution of the sum of almost surely convergent in $X$ series $\sum_{n=1}^\infty x_ng_n$, where $(x_n)$ is an unconditionally summable sequence of elements of $X$ and $(g_n)$ is a sequence of stochastically independent standard Gaussian random variables.
Keywords: diagonally canonical gaussian random element; unconditionally canonical gaussian random element; gaussian covariance operator; cotype of Banach spaces; r-nuclear operator; summing operator; Gaussian average property; $gl_2$-Banach space.
@article{TVP_2013_58_2_a4,
     author = {V. V. Kvaratskhelia and V. I. Tarieladze},
     title = {Diagonally canonical and related {Gaussian} random elements},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {282--297},
     year = {2013},
     volume = {58},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a4/}
}
TY  - JOUR
AU  - V. V. Kvaratskhelia
AU  - V. I. Tarieladze
TI  - Diagonally canonical and related Gaussian random elements
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2013
SP  - 282
EP  - 297
VL  - 58
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a4/
LA  - ru
ID  - TVP_2013_58_2_a4
ER  - 
%0 Journal Article
%A V. V. Kvaratskhelia
%A V. I. Tarieladze
%T Diagonally canonical and related Gaussian random elements
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2013
%P 282-297
%V 58
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a4/
%G ru
%F TVP_2013_58_2_a4
V. V. Kvaratskhelia; V. I. Tarieladze. Diagonally canonical and related Gaussian random elements. Teoriâ veroâtnostej i ee primeneniâ, Tome 58 (2013) no. 2, pp. 282-297. http://geodesic.mathdoc.fr/item/TVP_2013_58_2_a4/

[1] Vakhaniya N. N., “O normalnykh raspredeleniyakh v prostranstve $ l_{p}$”, Teoriya veroyatn. i ee primen., 9:4 (1964), 737–738 | MR | Zbl

[2] Vakhania N. N., “Sur les répartitions de probabilités dans les espaces de suites numériques”, C. R. Acad. Sci. Paris, 260:5 (1965), 1560–1562 | MR | Zbl

[3] Vakhaniya N. N., “Kovariatsionnyi operator veroyatnostnogo raspredeleniya v prostranstve Banakha”, Soobsch. AN GSSR, 51:1 (1968), 35–40 | MR | Zbl

[4] Vakhania N. N., Probability Distributions in Linear Spaces, North-Holland, New York–Oxford, 1981, 123 pp. | MR | Zbl

[5] Vakhaniya N. N., Tarieladze V. I., Chobanyan S. A., Probability Distributions on Banach Spaces, Reidel, Dordrecht, 1987, 482 pp. | MR | Zbl

[6] Kühn T., Linde W., “The $ r$-nuclearity $ (0\leq 1)$ of Gaussian covariances”, Math. Nachr., 95 (1980), 165–175 | DOI | MR | Zbl

[7] Kühn T., “On the $ r$-nuclearity of Gaussian covariances and the composition of nuclear operators”, Math. Ann., 262 (1983), 377–381 | DOI | MR

[8] Lindenstrauss J., Tzafriri L., Classical Banach Spaces, v. I, Sequence Spaces, Springer-Verlag, Berlin–Heidelberg–New York, 1977, 190 pp. | MR | Zbl

[9] Diestel J., Jarchow H., Tonge A., Absolutely summing operators, Cambridge Univ. Press, Cambridge, 1995, 474 pp. | MR | Zbl

[10] Kvaratskhelia V. V., “On unconditional convergence of random series in Banach spaces”, Lecture Notes in Math., 828, 1980, 162–166 | DOI | MR | Zbl

[11] Kwapień S., Tarieladze V., “On a.s. unconditional convergence of random series in Banach spaces”, Stochastic Inequalities and Applications (Barcelona, 2002), Progr. Probab., 56, Birkhäuser, Basel, 2003, 71–75 | MR | Zbl

[12] Kwapień S., Szymański B., “Some remarks on Gaussian measures in Banach spaces”, Probab. Math. Statist., 1, 1980, 59–65 | MR | Zbl

[13] Gordon Y., Lewis D. R., “Absolutely summing operators and local unconditional structures”, Acta Math., 133 (1974), 27–48 | DOI | MR | Zbl

[14] Casazza P. G., Nielsen N. J., “A Gaussian average property of Banach spaces”, Illinois J. Math., 41:4 (1997), 559–576 | MR | Zbl

[15] Chobanjan S. A., Tarieladze V. I., “Gaussian characterizations of certain Banach spaces”, J. Multivariate Anal., 7 (1977), 183–203 | DOI | MR | Zbl

[16] Johnson W. B., “Homogeneous Banach spaces”, Lecture Notes in Math., 1317, 1988, 201–203 | DOI | MR | Zbl

[17] Milman V. D., Pisier G., “Banach spaces with a weak cotype 2 property”, Israel J. Math., 54 (1986), 139–158 | DOI | MR | Zbl

[18] Pisier G., The volume of convex bodies and Banach space geometry, Cambridge Univ. Press, Cambridge, 1989, 250 pp. | MR | Zbl

[19] Talagrand M., “Regularity of Gaussian processes”, Acta Math., 159:1–2 (1987), 99–149 | DOI | MR | Zbl