Uniform integrability for strong ratio limit theorems. III
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 682-700
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Unlike Parts I and II of this paper [Theory Probab. Appl. 50, No. 3, 436–447 (2006); translation from Teor. Veroyatn. Primen. 50, No. 3, 517–532 (2005; Zbl 1120.60028) and Theory Probab. Appl. 55, No. 3, 473–484 (2011); erratum ibid. 56, No. 1, 178 (2012); translation from Teor. Veroyatn. Primen. 55, No. 3, 446–461 (2010; Zbl 1247.60040)], which dealt with strong limit theorems for ratios (SLTR) in the traditional sense, now we propose new SLTR with particular parametric sets. The peculiarity of these theorems is that their statements ignore some values of time parameter that form a particular set of density 0. SLTR of this type for random walks on unimodular locally compact groups are given as an illustration of the general theory.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
Markov chain; strong limit theorem for ratios; random walk on a group.
                    
                  
                
                
                @article{TVP_2012_57_4_a3,
     author = {M. G. Shur},
     title = {Uniform integrability for strong ratio limit theorems. {III}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {682--700},
     publisher = {mathdoc},
     volume = {57},
     number = {4},
     year = {2012},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a3/}
}
                      
                      
                    M. G. Shur. Uniform integrability for strong ratio limit theorems. III. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 682-700. http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a3/
