Uniform integrability for strong ratio limit theorems. III
Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 682-700 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Unlike Parts I and II of this paper [Theory Probab. Appl. 50, No. 3, 436–447 (2006); translation from Teor. Veroyatn. Primen. 50, No. 3, 517–532 (2005; Zbl 1120.60028) and Theory Probab. Appl. 55, No. 3, 473–484 (2011); erratum ibid. 56, No. 1, 178 (2012); translation from Teor. Veroyatn. Primen. 55, No. 3, 446–461 (2010; Zbl 1247.60040)], which dealt with strong limit theorems for ratios (SLTR) in the traditional sense, now we propose new SLTR with particular parametric sets. The peculiarity of these theorems is that their statements ignore some values of time parameter that form a particular set of density 0. SLTR of this type for random walks on unimodular locally compact groups are given as an illustration of the general theory.
Keywords: Markov chain; strong limit theorem for ratios; random walk on a group.
@article{TVP_2012_57_4_a3,
     author = {M. G. Shur},
     title = {Uniform integrability for strong ratio limit theorems. {III}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {682--700},
     year = {2012},
     volume = {57},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a3/}
}
TY  - JOUR
AU  - M. G. Shur
TI  - Uniform integrability for strong ratio limit theorems. III
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2012
SP  - 682
EP  - 700
VL  - 57
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a3/
LA  - ru
ID  - TVP_2012_57_4_a3
ER  - 
%0 Journal Article
%A M. G. Shur
%T Uniform integrability for strong ratio limit theorems. III
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2012
%P 682-700
%V 57
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a3/
%G ru
%F TVP_2012_57_4_a3
M. G. Shur. Uniform integrability for strong ratio limit theorems. III. Teoriâ veroâtnostej i ee primeneniâ, Tome 57 (2012) no. 4, pp. 682-700. http://geodesic.mathdoc.fr/item/TVP_2012_57_4_a3/

[25] Bredikhin B. M., “Asimptoticheskaya plotnost”, Matematicheskaya entsiklopediya, v. 1, Sovetskaya entsiklopediya, M., 1977, 332

[26] Bulinskii A. V., Shiryaev A. N., Teoriya sluchainykh protsessov, Fizmatlit, M., 2003, 399 pp.

[27] Burbaki N., Integrirovanie: Mery na lokalno kompaktnykh prostranstvakh. Prodolzhenie mery. Integrirovanie mer. Mery na otdelimykh prostranstvakh, Nauka, M., 1977, 600 pp.

[28] Dynkin E. B., Osnovaniya teorii markovskikh protsessov, Fizmatgiz, M., 1959, 654 pp.

[29] Khyuitt E., Ross K., Abstraktnyi garmonicheskii analiz, v. 1, Nauka, M., 1975, 654 pp.

[30] Shur M. G., “Uslovie ravnomernoi integriruemosti v silnykh predelnykh teoremakh dlya otnoshenii, II”, Teoriya veroyatn. i ee primen., 55:3 (2010), 446–461 | MR

[31] Shur M. G., “Asimptoticheskaya ravnoraspredelennost simmetrichnykh sluchainykh bluzhdanii na unimodulyarnykh gruppakh”, Teoriya veroyatn. i ee primen., 40:2 (1995), 347–360 | MR