Mots-clés : one-dimensional diffusion, occupation times formula, Itô–Tanaka formula
@article{TVP_2009_54_1_a4,
author = {D. V. Belomestny and L. R\"uschendorf and M. A. Urusov},
title = {Optimal {Stopping} of {Integral} {Functionals} and a {{\textquotedblleft}No-Loss{\textquotedblright}} {Free} {Boundary} {Formulation}},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {80--96},
year = {2009},
volume = {54},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a4/}
}
TY - JOUR AU - D. V. Belomestny AU - L. Rüschendorf AU - M. A. Urusov TI - Optimal Stopping of Integral Functionals and a “No-Loss” Free Boundary Formulation JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2009 SP - 80 EP - 96 VL - 54 IS - 1 UR - http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a4/ LA - en ID - TVP_2009_54_1_a4 ER -
%0 Journal Article %A D. V. Belomestny %A L. Rüschendorf %A M. A. Urusov %T Optimal Stopping of Integral Functionals and a “No-Loss” Free Boundary Formulation %J Teoriâ veroâtnostej i ee primeneniâ %D 2009 %P 80-96 %V 54 %N 1 %U http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a4/ %G en %F TVP_2009_54_1_a4
D. V. Belomestny; L. Rüschendorf; M. A. Urusov. Optimal Stopping of Integral Functionals and a “No-Loss” Free Boundary Formulation. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 80-96. http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a4/
[1] Beibel M., Lerche H. R., “A note on optimal stopping of regular diffusions under random discounting”, Teoriya veroyatn. i ee primen., 45:4 (2000), 657–669 | MR | Zbl
[2] Crandall M. G., Ishii H., Lions P.-L., “User's guide to viscosity solutions of second order partial differential equations”, Bull. Amer. Math. Soc., 27:1 (1992), 1–67 | DOI | MR | Zbl
[3] Dayanik S., “Optimal stopping of linear diffusions with random discounting”, Math. Oper. Res., 33:3 (2008), 645–661 | DOI | MR
[4] Dayanik S., Karatzas I., “On the optimal stopping problem for one-dimensional diffusions”, Stochastic Process. Appl., 107:2 (2003), 173–212 | DOI | MR | Zbl
[5] Engelbert H. J., Schmidt W., “On one-dimensional stochastic differential equations with generalized drift”, Stochastic Differential Systems (Marseille–Luminy, 1984), Lecture Notes in Control and Inform. Sci., 69, Springer, Berlin, 1985, 143–155 | MR
[6] Engelbert H. J., Schmidt W., “Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations. III”, Math. Nachr., 151 (1991), 149–197 | DOI | MR | Zbl
[7] Graversen S. E., Peskir G., Shiryaev A. N., “Stopping Brownian motion without anticipation as close as possible to its ultimate maximum”, Teoriya veroyatn. i ee primen., 45:1 (2000), 125–136 | MR | Zbl
[8] Grigelionis B. I., Shiryaev A. N., “O zadache Stefana i optimalnykh pravilakh ostanovki markovskikh protsessov”, Teoriya veroyatn. i ee primen., 11:4 (1966), 612–631 | MR | Zbl
[9] Johnson T. C., Zervos M., “The solution to a second order linear ordinary differential equation with a non-homogeneous term that is a measure”, Stochastics, 79:3–4 (2007), 363–382 | MR | Zbl
[10] Karatzas I., Ocone D., “A leavable bounded-velocity stochastic control problem”, Stochastic Process. Appl., 99:1 (2002), 31–51 | DOI | MR | Zbl
[11] Karatzas I., Shreve S. E., Brownian Motion and Stochastic Calculus, Graduate Texts in Math., 113, Springer-Verlag, New York, 1991, 470 pp. | MR | Zbl
[12] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977, 399 pp. | MR
[13] Lamberton D., Zervos M., On the problem of optimally stopping a one-dimensional Itô diffusion, Preprint, The London School of Economics and Political Science, London, 2006; http://www.maths.lse.ac.uk/Personal/mihail/publications
[14] Mikhalevich V. S., “Baiesovskii vybor mezhdu dvumya gipotezami o srednem znachenii normalnogo protsessa”, Vestn. Kiev. un-ta, 1958, no. 1, 101–104
[15] Øksendal B., Reikvam K., “Viscosity solutions of optimal stopping problems”, Stochastics Stochastics Rep., 62:3–4 (1998), 285–301 | MR
[16] Øksendal B., Sulem A., Applied Stochastic Control of Jump Diffusions, Springer-Verlag, Berlin, 2005, 208 pp. | MR
[17] Peskir G., “Principle of smooth fit and diffusions with angles”, Stochastics, 79:3–4 (2007), 293–302 | MR | Zbl
[18] Peskir G., Shiryaev A. N., Optimal Stopping and Free-Boundary Problems, Birkhäuser, Basel, 2006, 500 pp. | MR | Zbl
[19] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Grundlehren Math. Wiss., 293, Springer-Verlag, Berlin, 1999, 602 pp. | MR | Zbl
[20] Rogers L. C. G., Williams D., Diffusions, Markov Processes and Martingales, v. 2, Cambridge Univ. Press, Cambridge, 2000, 480 pp. | MR
[21] Rüschendorf L., Urusov M. A., “On a class of optimal stopping problems for diffusions with discontinuous coefficients”, Ann. Appl. Probab., 18:3 (2008), 847–878 | DOI | MR | Zbl
[22] Salminen P., “Optimal stopping of one-dimensional diffusions”, Math. Nachr., 124 (1985), 85–101 | DOI | MR | Zbl
[23] Shiryaev A. N., Statisticheskii posledovatelnyi analiz: Optimalnye pravila ostanovki, Nauka, M., 1969, 231 pp. ; 2-е изд., перераб., Наука, М., 1976, 272 с. | MR | Zbl