Optimal Stopping of Integral Functionals and a “No-Loss” Free Boundary Formulation
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 80-96 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is concerned with a modification of the classical formulation of the free boundary problem for the optimal stopping of integral functionals of one-dimensional diffusions with, possibly, irregular coefficients. This modification was introduced in [L. Rüschendorf and M. A. Urusov, Ann. Appl. Probab., 18 (2008), pp. 847–878]. As a main result of that paper a verification theorem was established. Solutions of the modified free boundary problem imply solutions of the optimal stopping problem. The main contribution of this paper is to establish the converse direction. Solutions of the optimal stopping problem necessarily also solve the modified free boundary problem. Thus the modified free boundary problem is also necessary and does not “lose” solutions. In particular, we prove smooth fit in our situation. In the final part of this paper we discuss related questions for the viscosity approach and describe an advantage of the modified free boundary formulation.
Keywords: optimal stopping, free boundary problem, Engelbert–Schmidt conditions, local times, viscosity solution of a one-dimensional ODE of second order.
Mots-clés : one-dimensional diffusion, occupation times formula, Itô–Tanaka formula
@article{TVP_2009_54_1_a4,
     author = {D. V. Belomestny and L. R\"uschendorf and M. A. Urusov},
     title = {Optimal {Stopping} of {Integral} {Functionals} and a {{\textquotedblleft}No-Loss{\textquotedblright}} {Free} {Boundary} {Formulation}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {80--96},
     year = {2009},
     volume = {54},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a4/}
}
TY  - JOUR
AU  - D. V. Belomestny
AU  - L. Rüschendorf
AU  - M. A. Urusov
TI  - Optimal Stopping of Integral Functionals and a “No-Loss” Free Boundary Formulation
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2009
SP  - 80
EP  - 96
VL  - 54
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a4/
LA  - en
ID  - TVP_2009_54_1_a4
ER  - 
%0 Journal Article
%A D. V. Belomestny
%A L. Rüschendorf
%A M. A. Urusov
%T Optimal Stopping of Integral Functionals and a “No-Loss” Free Boundary Formulation
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2009
%P 80-96
%V 54
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a4/
%G en
%F TVP_2009_54_1_a4
D. V. Belomestny; L. Rüschendorf; M. A. Urusov. Optimal Stopping of Integral Functionals and a “No-Loss” Free Boundary Formulation. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 80-96. http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a4/

[1] Beibel M., Lerche H. R., “A note on optimal stopping of regular diffusions under random discounting”, Teoriya veroyatn. i ee primen., 45:4 (2000), 657–669 | MR | Zbl

[2] Crandall M. G., Ishii H., Lions P.-L., “User's guide to viscosity solutions of second order partial differential equations”, Bull. Amer. Math. Soc., 27:1 (1992), 1–67 | DOI | MR | Zbl

[3] Dayanik S., “Optimal stopping of linear diffusions with random discounting”, Math. Oper. Res., 33:3 (2008), 645–661 | DOI | MR

[4] Dayanik S., Karatzas I., “On the optimal stopping problem for one-dimensional diffusions”, Stochastic Process. Appl., 107:2 (2003), 173–212 | DOI | MR | Zbl

[5] Engelbert H. J., Schmidt W., “On one-dimensional stochastic differential equations with generalized drift”, Stochastic Differential Systems (Marseille–Luminy, 1984), Lecture Notes in Control and Inform. Sci., 69, Springer, Berlin, 1985, 143–155 | MR

[6] Engelbert H. J., Schmidt W., “Strong Markov continuous local martingales and solutions of one-dimensional stochastic differential equations. III”, Math. Nachr., 151 (1991), 149–197 | DOI | MR | Zbl

[7] Graversen S. E., Peskir G., Shiryaev A. N., “Stopping Brownian motion without anticipation as close as possible to its ultimate maximum”, Teoriya veroyatn. i ee primen., 45:1 (2000), 125–136 | MR | Zbl

[8] Grigelionis B. I., Shiryaev A. N., “O zadache Stefana i optimalnykh pravilakh ostanovki markovskikh protsessov”, Teoriya veroyatn. i ee primen., 11:4 (1966), 612–631 | MR | Zbl

[9] Johnson T. C., Zervos M., “The solution to a second order linear ordinary differential equation with a non-homogeneous term that is a measure”, Stochastics, 79:3–4 (2007), 363–382 | MR | Zbl

[10] Karatzas I., Ocone D., “A leavable bounded-velocity stochastic control problem”, Stochastic Process. Appl., 99:1 (2002), 31–51 | DOI | MR | Zbl

[11] Karatzas I., Shreve S. E., Brownian Motion and Stochastic Calculus, Graduate Texts in Math., 113, Springer-Verlag, New York, 1991, 470 pp. | MR | Zbl

[12] Krylov N. V., Upravlyaemye protsessy diffuzionnogo tipa, Nauka, M., 1977, 399 pp. | MR

[13] Lamberton D., Zervos M., On the problem of optimally stopping a one-dimensional Itô diffusion, Preprint, The London School of Economics and Political Science, London, 2006; http://www.maths.lse.ac.uk/Personal/mihail/publications

[14] Mikhalevich V. S., “Baiesovskii vybor mezhdu dvumya gipotezami o srednem znachenii normalnogo protsessa”, Vestn. Kiev. un-ta, 1958, no. 1, 101–104

[15] Øksendal B., Reikvam K., “Viscosity solutions of optimal stopping problems”, Stochastics Stochastics Rep., 62:3–4 (1998), 285–301 | MR

[16] Øksendal B., Sulem A., Applied Stochastic Control of Jump Diffusions, Springer-Verlag, Berlin, 2005, 208 pp. | MR

[17] Peskir G., “Principle of smooth fit and diffusions with angles”, Stochastics, 79:3–4 (2007), 293–302 | MR | Zbl

[18] Peskir G., Shiryaev A. N., Optimal Stopping and Free-Boundary Problems, Birkhäuser, Basel, 2006, 500 pp. | MR | Zbl

[19] Revuz D., Yor M., Continuous Martingales and Brownian Motion, Grundlehren Math. Wiss., 293, Springer-Verlag, Berlin, 1999, 602 pp. | MR | Zbl

[20] Rogers L. C. G., Williams D., Diffusions, Markov Processes and Martingales, v. 2, Cambridge Univ. Press, Cambridge, 2000, 480 pp. | MR

[21] Rüschendorf L., Urusov M. A., “On a class of optimal stopping problems for diffusions with discontinuous coefficients”, Ann. Appl. Probab., 18:3 (2008), 847–878 | DOI | MR | Zbl

[22] Salminen P., “Optimal stopping of one-dimensional diffusions”, Math. Nachr., 124 (1985), 85–101 | DOI | MR | Zbl

[23] Shiryaev A. N., Statisticheskii posledovatelnyi analiz: Optimalnye pravila ostanovki, Nauka, M., 1969, 231 pp. ; 2-е изд., перераб., Наука, М., 1976, 272 с. | MR | Zbl