Optimal Stopping of Integral Functionals and a ``No-Loss'' Free Boundary Formulation
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 80-96
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper is concerned with a modification of the classical formulation of the free boundary problem for the optimal stopping of integral functionals of one-dimensional diffusions with, possibly, irregular coefficients. This modification was introduced in [L. Rüschendorf and M. A. Urusov, Ann. Appl. Probab., 18 (2008), pp. 847–878]. As a main result of that paper a verification theorem was established. Solutions of the modified free boundary problem imply solutions of the optimal stopping problem. The main contribution of this paper is to establish the converse direction. Solutions of the optimal stopping problem necessarily also solve the modified free boundary problem. Thus the modified free boundary problem is also necessary and does not “lose” solutions. In particular, we prove smooth fit in our situation. In the final part of this paper we discuss related questions for the viscosity approach and describe an advantage of the modified free boundary formulation.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
optimal stopping, free boundary problem, Engelbert–Schmidt conditions, local times, viscosity solution of a one-dimensional ODE of second order.
Mots-clés : one-dimensional diffusion, occupation times formula, Itô–Tanaka formula
                    
                  
                
                
                Mots-clés : one-dimensional diffusion, occupation times formula, Itô–Tanaka formula
@article{TVP_2009_54_1_a4,
     author = {D. V. Belomestny and L. R\"uschendorf and M. A. Urusov},
     title = {Optimal {Stopping} of {Integral} {Functionals} and a {``No-Loss''} {Free} {Boundary} {Formulation}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {80--96},
     publisher = {mathdoc},
     volume = {54},
     number = {1},
     year = {2009},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a4/}
}
                      
                      
                    TY - JOUR AU - D. V. Belomestny AU - L. Rüschendorf AU - M. A. Urusov TI - Optimal Stopping of Integral Functionals and a ``No-Loss'' Free Boundary Formulation JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2009 SP - 80 EP - 96 VL - 54 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a4/ LA - en ID - TVP_2009_54_1_a4 ER -
%0 Journal Article %A D. V. Belomestny %A L. Rüschendorf %A M. A. Urusov %T Optimal Stopping of Integral Functionals and a ``No-Loss'' Free Boundary Formulation %J Teoriâ veroâtnostej i ee primeneniâ %D 2009 %P 80-96 %V 54 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a4/ %G en %F TVP_2009_54_1_a4
D. V. Belomestny; L. Rüschendorf; M. A. Urusov. Optimal Stopping of Integral Functionals and a ``No-Loss'' Free Boundary Formulation. Teoriâ veroâtnostej i ee primeneniâ, Tome 54 (2009) no. 1, pp. 80-96. http://geodesic.mathdoc.fr/item/TVP_2009_54_1_a4/
