On the Best 2-CUSUM Stopping Rule for Quickest Detection of Two-Sided Alternatives in a Brownian Motion Model
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 3, pp. 610-622
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This work examines the problem of sequential detection of a change in the drift of a Brownian motion in the case of two-sided alternatives. Traditionally, 2-CUSUM stopping rules have been used for this problem due to their asymptotically optimal character as the mean time between false alarms tends to $\infty$. In particular, attention has focused on 2-CUSUM harmonic mean rules due to the simplicity of calculating their first moments. In this paper, expressions for the first moment of a general 2-CUSUM stopping rule and its rate of change are derived. These expressions are used to obtain explicit upper and lower bounds for it and its rate of change as one of the threshold parameters changes. Using these expressions we prove not only the existence but also the uniqueness of the best classical 2-CUSUM stopping rule with respect to the extended Lorden criterion suggested in [O. Hadjiliadis and G. V. Moustakides, Theory Probab. Appl., 50 (2006), pp. 75–85]. In particular, in both the symmetric and the nonsymmetric case we identify the class of the best 2-CUSUM stopping rule
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
change detection, quickest detection, CUSUM, two-sided CUSUM.
                    
                    
                    
                  
                
                
                @article{TVP_2008_53_3_a10,
     author = {O. Hadjiliadis and V. H. Poor},
     title = {On the {Best} {2-CUSUM} {Stopping} {Rule} for {Quickest} {Detection} of {Two-Sided} {Alternatives} in a {Brownian} {Motion} {Model}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {610--622},
     publisher = {mathdoc},
     volume = {53},
     number = {3},
     year = {2008},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2008_53_3_a10/}
}
                      
                      
                    TY - JOUR AU - O. Hadjiliadis AU - V. H. Poor TI - On the Best 2-CUSUM Stopping Rule for Quickest Detection of Two-Sided Alternatives in a Brownian Motion Model JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2008 SP - 610 EP - 622 VL - 53 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2008_53_3_a10/ LA - en ID - TVP_2008_53_3_a10 ER -
%0 Journal Article %A O. Hadjiliadis %A V. H. Poor %T On the Best 2-CUSUM Stopping Rule for Quickest Detection of Two-Sided Alternatives in a Brownian Motion Model %J Teoriâ veroâtnostej i ee primeneniâ %D 2008 %P 610-622 %V 53 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_2008_53_3_a10/ %G en %F TVP_2008_53_3_a10
O. Hadjiliadis; V. H. Poor. On the Best 2-CUSUM Stopping Rule for Quickest Detection of Two-Sided Alternatives in a Brownian Motion Model. Teoriâ veroâtnostej i ee primeneniâ, Tome 53 (2008) no. 3, pp. 610-622. http://geodesic.mathdoc.fr/item/TVP_2008_53_3_a10/
