Random time-changed extremal processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 752-772 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The point process $\mathcal N=\{(T_k,X_k):k\ge 1\}$ we deal with here is an assumed Bernoulli point process with independent random vectors $X_k$ in $[0,\infty)^d$ and with random time points $T_k$ in $[0,\infty)$, independent of $X$. For normalizing we use a regular sequence $\xi_n(t,x) =(\tau_n(t),u_n(x))$ of time-space changes of $[0,\infty)^{1+d}$. We consider the sequence of the associated extremal processes, $\widetilde{Y}_n(t)=\{\bigvee u^{-1}_n(X_k):T_k\le\tau_n(t)\}$, where the max-operation "$\vee$" is defined in $\mathbf R^d$ componentwise. We assume further that there exist a stochastically continuous time process $\theta=\{\theta(t):t\ge 0\}$, strictly increasing and independent of $\{X_k\}$, and an integer-valued deterministic counting function $k$ on $[0,\infty)$, so that the counting process $N$ of $\mathcal N$ has the form $N(s)=k(\theta(s))$ a.s. In this framework we prove a functional transfer theorem which claims in general that if $\tau_n^{-1}\circ\theta\circ\tau_n\Rightarrow\Lambda$, where $\Lambda$ is strictly increasing and stochastically continuous, and if $\bigvee_{k=1}^{k(\tau_n(\cdot))}u^{-1}_n (X_k)\Rightarrow Y(\cdot)$, then $\widetilde{Y}_n\rightarrow\widetilde{Y}=Y\circ\Lambda$, where $Y$ is a self-similar extremal process. We call such limit processes random time-changed, or compound. They are stochastically continuous and self-similar with respect to the same one-parameter norming group as $Y$. We show that the compound process is an extremal process (i.e., a process with independent max-increments) if and only if $\Lambda$ has independent increments and $Y$ has homogeneous max-increments. We apply random time-changed extremal processes to find a lower bound for the ruin probability in an insurance model associated with $\mathcal N$. We give also an upper bound using an $\alpha$-stable Lévy motion.
Keywords: extremal processes, weak limit theorems, ruin probability.
@article{TVP_2006_51_4_a5,
     author = {E. I. Pancheva and E. T. Kolkovska and P. K. Jordanova},
     title = {Random time-changed extremal processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {752--772},
     year = {2006},
     volume = {51},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a5/}
}
TY  - JOUR
AU  - E. I. Pancheva
AU  - E. T. Kolkovska
AU  - P. K. Jordanova
TI  - Random time-changed extremal processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 752
EP  - 772
VL  - 51
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a5/
LA  - en
ID  - TVP_2006_51_4_a5
ER  - 
%0 Journal Article
%A E. I. Pancheva
%A E. T. Kolkovska
%A P. K. Jordanova
%T Random time-changed extremal processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 752-772
%V 51
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a5/
%G en
%F TVP_2006_51_4_a5
E. I. Pancheva; E. T. Kolkovska; P. K. Jordanova. Random time-changed extremal processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 752-772. http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a5/

[1] Balkema A. A., Resnick S. I., “Max-infinite divisibility”, J. Appl. Probab., 14:2 (1977), 309–319 | DOI | MR | Zbl

[2] Balkema A. A., Pancheva E. I., “Decomposition for multivariate extremal processes”, Comm. Statist. Theory Methods, 25:4 (1996), 737–758 | DOI | MR | Zbl

[3] Bingham N. H., “Limit theorems for occupation times of Markov processes”, Z. Wahrscheinlichkeitstheor. Verw. Geb., 17 (1971), 1–22 | DOI | MR | Zbl

[4] Furrer H., Michna Z., Weron A., “Stable Lévy motion approximation in collective risk theory”, Insurance Math. Econ., 20:2 (1997), 97–114 | DOI | MR | Zbl

[5] Gnedenko B. V., Gnedenko D. B., “O raspredeleniyakh Laplasa i logisticheskom kak predelnykh v teorii veroyatnostei”, Serdika, 8:2, 229–234 | MR | Zbl

[6] Gnedenko B. V., Fakhim G., “Ob odnoi teoreme perenosa”, Dokl. AN SSSR, 187:1 (1969), 15–17 | MR | Zbl

[7] Maejima M., Sato K., Watanabe T., Remarks on semi-selfsimilar processes, Research report KSTS/RR-97/013, Keio University, Tokyo, 1997

[8] Mikosch T., Resnick S., “Activity rates with very heavy tails”, Stochastic Process. Appl., 116:2 (2006), 131–155 | DOI | MR | Zbl

[9] Resnick S., Extreme Values, Regular Variation and Point Processes, Springer-Verlag, New York, 1987, 320 pp. | MR | Zbl

[10] Pancheva E. I., “Self-similar extremal processes”, J. Math. Sci. (New York), 92:3 (1998), 3911–3920 | DOI | MR | Zbl

[11] Pancheva E. I., “Semi-selfsimilar extremal processes”, J. Math. Sci. (New York), 99:3 (2000), 1306–1316 | DOI | MR | Zbl

[12] Samorodnitsky G., Taqqu M. S., Stable non-Gaussian random processes, Chapman Hall, New York, 1994, 632 pp. | MR

[13] Satheesh S., “Aspects of randomization in infinitely divisible and max-infinitely divisible laws”, Probab. Statist. Models, 1 (2002), 7–16

[14] Silvestrov D. S., Teugels J. L., “Limit theorems for extremes with random sample size”, Adv. in Appl. Probab., 30:3 (1998), 777–806 | DOI | MR | Zbl

[15] Whitt W., “Some useful functions for functional limit theorems”, Math. Oper. Res., 5:1 (1980), 67–85 | DOI | MR | Zbl