Random time-changed extremal processes
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 752-772
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The point process $\mathcal N=\{(T_k,X_k):k\ge 1\}$ we deal with here is an assumed Bernoulli point process with independent random vectors $X_k$ in $[0,\infty)^d$ and with random time points $T_k$ in $[0,\infty)$, independent of $X$. For normalizing we use a regular sequence $\xi_n(t,x) =(\tau_n(t),u_n(x))$ of time-space changes of $[0,\infty)^{1+d}$. We consider the sequence of the associated extremal processes, $\widetilde{Y}_n(t)=\{\bigvee u^{-1}_n(X_k):T_k\le\tau_n(t)\}$, where the max-operation "$\vee$" is defined in $\mathbf R^d$ componentwise. We assume further that there exist a stochastically continuous time process $\theta=\{\theta(t):t\ge 0\}$, strictly increasing and independent of $\{X_k\}$, and an integer-valued deterministic counting function $k$ on $[0,\infty)$, so that the counting process $N$ of $\mathcal N$ has the form $N(s)=k(\theta(s))$ a.s. In this framework we prove a functional transfer theorem which claims in general that if $\tau_n^{-1}\circ\theta\circ\tau_n\Rightarrow\Lambda$, where $\Lambda$ is strictly increasing and stochastically continuous, and if $\bigvee_{k=1}^{k(\tau_n(\cdot))}u^{-1}_n (X_k)\Rightarrow Y(\cdot)$, then $\widetilde{Y}_n\rightarrow\widetilde{Y}=Y\circ\Lambda$, where $Y$ is a self-similar extremal process. We call such limit processes random time-changed, or compound. They are stochastically continuous and self-similar with respect to the same one-parameter norming group as $Y$. We show that the compound process is an extremal process (i.e., a process with independent max-increments) if and only if $\Lambda$ has independent increments and $Y$ has homogeneous max-increments. We apply random time-changed extremal processes to find a lower bound for the ruin probability in an insurance model associated with $\mathcal N$. We give also an upper bound using an $\alpha$-stable Lévy motion.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
extremal processes, weak limit theorems, ruin probability.
                    
                    
                    
                  
                
                
                @article{TVP_2006_51_4_a5,
     author = {E. I. Pancheva and E. T. Kolkovska and P. K. Jordanova},
     title = {Random time-changed extremal processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {752--772},
     publisher = {mathdoc},
     volume = {51},
     number = {4},
     year = {2006},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a5/}
}
                      
                      
                    TY - JOUR AU - E. I. Pancheva AU - E. T. Kolkovska AU - P. K. Jordanova TI - Random time-changed extremal processes JO - Teoriâ veroâtnostej i ee primeneniâ PY - 2006 SP - 752 EP - 772 VL - 51 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a5/ LA - en ID - TVP_2006_51_4_a5 ER -
E. I. Pancheva; E. T. Kolkovska; P. K. Jordanova. Random time-changed extremal processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 4, pp. 752-772. http://geodesic.mathdoc.fr/item/TVP_2006_51_4_a5/
