Arcsine law for branching processes in a random environment and Galton–Watson processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 449-464 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Two closely related results are established. A given critical branching process in a random environment attains a high level and spends at that level a part of its life obeying the arcsine law. If a critical Galton–Watson process survives up to a distant moment, then the ratio of the total number of individuals of the future generations to the total number of individuals ever born in the process obeys the arcsine law.
Keywords: branching process in a random environment, Galton–Watson process, stopped random walk, conditional invariance principle, conditional limit theorems
Mots-clés : arcsine law.
@article{TVP_2006_51_3_a0,
     author = {V. I. Afanasyev},
     title = {Arcsine law for branching processes in a~random environment and {Galton{\textendash}Watson} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {449--464},
     year = {2006},
     volume = {51},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a0/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - Arcsine law for branching processes in a random environment and Galton–Watson processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 449
EP  - 464
VL  - 51
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a0/
LA  - ru
ID  - TVP_2006_51_3_a0
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T Arcsine law for branching processes in a random environment and Galton–Watson processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 449-464
%V 51
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a0/
%G ru
%F TVP_2006_51_3_a0
V. I. Afanasyev. Arcsine law for branching processes in a random environment and Galton–Watson processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 449-464. http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a0/

[1] Afanasyev V. I., Geiger J., Kersting G., Vatutin V. A., “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[2] Afanasev V. I., “O maksimume kriticheskogo vetvyaschegosya protsessa v sluchainoi srede”, Diskretn. matem., 11:2 (1999), 86–102 | MR

[3] Afanasev V. I., “O momente dostizheniya fiksirovannogo urovnya kriticheskim vetvyaschimsya protsessom v sluchainoi srede”, Diskretn. matem., 11:4 (1999), 33–47 | MR

[4] Billingsli P., Skhodimost veroyatnostnykh mer, Nauka, M., 1977, 352 pp. | MR

[5] Durrett R. T., Iglehart D. L., “Functionals of Brownian meander and Brownian excursion”, Ann. Probab., 5:1 (1977), 130–135 | DOI | MR | Zbl

[6] Afanasev V. I., “Ob uslovnom printsipe invariantnosti dlya kriticheskogo vetvyaschegosya protsessa Galtona–Vatsona”, Diskretn. matem., 17:1 (2005), 35–49 | MR

[7] Cohen J. W., Hooghiemstra G., “Brownian excursion, the $M/M/1$ queue and their occupation times”, Math. Oper. Res., 6:4 (1981), 608–629 | DOI | MR | Zbl

[8] Lindvall T., “Limit theorems for some functionals of certain Galton–Watson branching processes”, Adv. Appl. Probab., 6 (1974), 309–321 | DOI | MR | Zbl

[9] Pakes A. G., “Some limit theorems for the total progeny of a branching process”, Adv. Appl. Probab., 3 (1971), 176–192 | DOI | MR | Zbl