Arcsine law for branching processes in a~random environment and Galton--Watson processes
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 449-464

Voir la notice de l'article provenant de la source Math-Net.Ru

Two closely related results are established. A given critical branching process in a random environment attains a high level and spends at that level a part of its life obeying the arcsine law. If a critical Galton–Watson process survives up to a distant moment, then the ratio of the total number of individuals of the future generations to the total number of individuals ever born in the process obeys the arcsine law.
Keywords: branching process in a random environment, Galton–Watson process, stopped random walk, conditional invariance principle, conditional limit theorems
Mots-clés : arcsine law.
@article{TVP_2006_51_3_a0,
     author = {V. I. Afanasyev},
     title = {Arcsine law for branching processes in a~random environment and {Galton--Watson} processes},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {449--464},
     publisher = {mathdoc},
     volume = {51},
     number = {3},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a0/}
}
TY  - JOUR
AU  - V. I. Afanasyev
TI  - Arcsine law for branching processes in a~random environment and Galton--Watson processes
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 449
EP  - 464
VL  - 51
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a0/
LA  - ru
ID  - TVP_2006_51_3_a0
ER  - 
%0 Journal Article
%A V. I. Afanasyev
%T Arcsine law for branching processes in a~random environment and Galton--Watson processes
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 449-464
%V 51
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a0/
%G ru
%F TVP_2006_51_3_a0
V. I. Afanasyev. Arcsine law for branching processes in a~random environment and Galton--Watson processes. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 3, pp. 449-464. http://geodesic.mathdoc.fr/item/TVP_2006_51_3_a0/