Growth of sums of pairwise independent random variables with infinite means
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 382-385 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is proved that $\textbf P\{|S_n|>a_n$ infinitely often$\}=0$ or $1$ if the series $\sum_{n=1}^{\infty}\textbf P\{|X_n|>a_n\}$ is convergent or nonconvergent, where $S_n=X_1+\dots+X_n$ is a sum of identically distributed pairwise independent random variables with infinite expectations, $a_n>0$, for some $m$ a sequence $\{a_n\}_{n\ge m}$ strictly increasing and convex.
Keywords: random variable, pairwise independence.
@article{TVP_2006_51_2_a7,
     author = {V. M. Kruglov},
     title = {Growth of sums of pairwise independent random variables with infinite means},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {382--385},
     year = {2006},
     volume = {51},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a7/}
}
TY  - JOUR
AU  - V. M. Kruglov
TI  - Growth of sums of pairwise independent random variables with infinite means
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 382
EP  - 385
VL  - 51
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a7/
LA  - ru
ID  - TVP_2006_51_2_a7
ER  - 
%0 Journal Article
%A V. M. Kruglov
%T Growth of sums of pairwise independent random variables with infinite means
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 382-385
%V 51
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a7/
%G ru
%F TVP_2006_51_2_a7
V. M. Kruglov. Growth of sums of pairwise independent random variables with infinite means. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 382-385. http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a7/

[1] Feller W., “A limit theorem for random variables with infinite moments”, Amer. J. Math., 68:2 (1946), 257–262 | DOI | MR | Zbl

[2] Fristedt B., “A short proof of a known limit theorem for sum of independent random variables with infinite expectations”, Ann. Math. Statist., 40:3 (1969), 1114–1115 | DOI | MR | Zbl

[3] Kochen S., Stone C., “A note on the Borel–Cantelli lemma”, Illinois J. Math., 8 (1964), 248–251 | MR | Zbl

[4] Kolmogorov A. N., Osnovnye ponyatiya teorii veroyatnostei, Nauka, M., 1974, 119 pp. | MR

[5] Etemadi N., “An elementary proof of the strong law of large numbers”, Z. Wahrscheinlichkeitstheor. verw. Geb., 55:1 (1981), 119–122 | DOI | MR | Zbl

[6] Bernshtein S. N., Teoriya veroyatnostei, Gostekhizdat, M.–L., 1946, 556 pp.

[7] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, T. 1, Mir, M., 1984, 528 pp. | MR

[8] O'Brien G. L., “Pairwise independent random variables”, Ann. Probab., 8:1 (1980), 170–175 | DOI | MR

[9] Lancaster H. O., “Pairwise statistical independence”, Ann. Math. Statist., 36:4 (1965), 1313–1317 | DOI | MR | Zbl

[10] Geisser S., Mantel N., “Pairwise independence of jointly dependent variables”, Ann. Math. Statist., 33:1 (1962), 290–291 | DOI | MR | Zbl

[11] Janson S., “Some pairwise independent sequences for which the central limit theorem fails”, Stochastics, 23:4 (1988), 439–448 | MR | Zbl

[12] Bradley R. C., “A stationary, pairwise independent, absolutely regular sequence for which the central limit theorem fails”, Probab. Theory Related Fields, 81:1 (1989), 1–10 | DOI | MR | Zbl