Growth of sums of pairwise independent random variables with infinite means
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 382-385

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that $\textbf P\{|S_n|>a_n$ infinitely often$\}=0$ or $1$ if the series $\sum_{n=1}^{\infty}\textbf P\{|X_n|>a_n\}$ is convergent or nonconvergent, where $S_n=X_1+\dots+X_n$ is a sum of identically distributed pairwise independent random variables with infinite expectations, $a_n>0$, for some $m$ a sequence $\{a_n\}_{n\ge m}$ strictly increasing and convex.
Keywords: random variable, pairwise independence.
@article{TVP_2006_51_2_a7,
     author = {V. M. Kruglov},
     title = {Growth of sums of pairwise independent random variables with infinite means},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {382--385},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a7/}
}
TY  - JOUR
AU  - V. M. Kruglov
TI  - Growth of sums of pairwise independent random variables with infinite means
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2006
SP  - 382
EP  - 385
VL  - 51
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a7/
LA  - ru
ID  - TVP_2006_51_2_a7
ER  - 
%0 Journal Article
%A V. M. Kruglov
%T Growth of sums of pairwise independent random variables with infinite means
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2006
%P 382-385
%V 51
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a7/
%G ru
%F TVP_2006_51_2_a7
V. M. Kruglov. Growth of sums of pairwise independent random variables with infinite means. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 382-385. http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a7/