Growth of sums of pairwise independent random variables with infinite means
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 382-385
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is proved that $\textbf P\{|S_n|>a_n$ infinitely often$\}=0$ or $1$ if the series $\sum_{n=1}^{\infty}\textbf P\{|X_n|>a_n\}$ is convergent or nonconvergent, where $S_n=X_1+\dots+X_n$ is a sum of identically distributed pairwise independent random variables with infinite expectations, $a_n>0$, for some $m$ a sequence $\{a_n\}_{n\ge m}$ strictly increasing and convex.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
random variable, pairwise independence.
                    
                  
                
                
                @article{TVP_2006_51_2_a7,
     author = {V. M. Kruglov},
     title = {Growth of sums of pairwise independent random variables with infinite means},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {382--385},
     publisher = {mathdoc},
     volume = {51},
     number = {2},
     year = {2006},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a7/}
}
                      
                      
                    V. M. Kruglov. Growth of sums of pairwise independent random variables with infinite means. Teoriâ veroâtnostej i ee primeneniâ, Tome 51 (2006) no. 2, pp. 382-385. http://geodesic.mathdoc.fr/item/TVP_2006_51_2_a7/
