An example of a random polynomial with unusual behavior of roots
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 549-555 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper constructs an example of random polynomials of order $n=1,2,\dots$ with independent identically distributed coefficients whose average number of real zeros is less than nine for all $n$. The average number $n/2+o(1)$ of complex zeros is concentrated near zero and the same number goes to infinity as $n\to\infty$.
Keywords: random polynomials, average number of real zeros.
@article{TVP_2005_50_3_a7,
     author = {D. N. Zaporozhets},
     title = {An example of a random polynomial with unusual behavior of roots},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {549--555},
     year = {2005},
     volume = {50},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a7/}
}
TY  - JOUR
AU  - D. N. Zaporozhets
TI  - An example of a random polynomial with unusual behavior of roots
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 549
EP  - 555
VL  - 50
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a7/
LA  - ru
ID  - TVP_2005_50_3_a7
ER  - 
%0 Journal Article
%A D. N. Zaporozhets
%T An example of a random polynomial with unusual behavior of roots
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 549-555
%V 50
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a7/
%G ru
%F TVP_2005_50_3_a7
D. N. Zaporozhets. An example of a random polynomial with unusual behavior of roots. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 549-555. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a7/

[1] Zaporozhets D. N., “O raspredelenii chisla veschestvennykh kornei sluchainogo polinoma”, Zapiski nauch. semin. POMI, 320, 2004, 69–79 | MR | Zbl

[2] Zaporozhets D. N., “Sluchainye polinomy i geometricheskaya veroyatnost”, Dokl. RAN, 400:3 (2005), 299–303 | MR

[3] Ibragimov I. A., Maslova N. B., “O srednem chisle veschestvennykh nulei sluchainykh polinomov. I. Koeffitsienty s nulevym srednim”, Teoriya veroyatn. i ee primen., 16:2 (1971), 229–248 | MR | Zbl

[4] Ibragimov I. A., Maslova N. B, “O srednem chisle veschestvennykh nulei sluchainykh polinomov. II. Koeffitsienty s nenulevym srednim”, Teoriya veroyatn. i ee primen., 16:3 (1971), 495–503 | MR | Zbl

[5] Ibragimov I. A., Maslova N. B., “Srednee chislo veschestvennykh kornei sluchainykh polinomov”, Dokl. AN SSSR, 199:1 (1971), 13–16 | MR | Zbl

[6] Ibpagimov I. A., Podkorytov S. S., “O sluchainykh veschestvennykh algebraicheskikh poverkhnostyakh”, Dokl. RAN, 343:6 (1995), 734–736 | MR

[7] Shparo D. I., Shur M. G., “O raspredelenii kornei sluchainykh mnogochlenov”, Vest. Mosk. un-ta, 1962, no. 3, 40–43

[8] Bloch A., Pólya G., “On the roots of certain algebraic equations”, Proc. London Math. Soc., 33 (1931), 102–114 | DOI

[9] Edelman A., Kostlan E., “How many zeros of a random polynomial are real?”, Bull. Amer. Math. Soc., 32:1 (1995), 1–37 | DOI | MR | Zbl

[10] Hammersley J. M., “The zeroes of a random polynomial”, Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, v. II, Univ. California Press, Berkeley, Los Angeles, 1956, 89–111 | MR

[11] Ibragimov I., Zeitouni O., “On roots of random polynomials”, Trans. Amer. Math. Soc., 349:6 (1997), 2427–2441 | DOI | MR | Zbl

[12] Kac M., “On the average number of real roots of a random algebraic equation”, Bull. Amer. Math. Soc., 49 (1943), 314–320 | DOI | MR | Zbl

[13] Kac M., “On the average number of real roots of a random algebraic equation. II”, Proc. London Math. Soc., 50 (1949), 390–408 | DOI | MR

[14] Littlewood J. E., Offord A. C., “On the number of real roots of a random algebraic equation. I”, J. London Math. Soc., 13 (1938), 288–295 | DOI

[15] Littlewood J. E., Offord A. C., “On the number of real roots of a random algebraic equation. II”, Proc. Cambridge Philos. Soc., 35 (1939), 133–148 | DOI | Zbl

[16] Littlewood J. E., Offord A. C., “On the number of real roots of a random algebraic equation. III”, Matem. sb., 12:3 (1943), 277–286 | MR | Zbl

[17] Logan B. F., Shepp L. A., “Real zeros of random polynomials”, Proc. London Math. Soc., 18 (1968), 29–35 | DOI | MR | Zbl

[18] Logan B. F., Shepp L. A., “Real zeros of random polynomials. II”, Proc. London Math. Soc., 18 (1968), 308–314 | DOI | MR | Zbl

[19] Shepp L. A., Vanderbei R. J., “The complex zeros of random polynomials”, Trans. Amer. Math. Soc., 347:11 (1995), 4365–4384 | DOI | MR | Zbl