An example of a random polynomial with unusual behavior of roots
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 549-555
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper constructs an example of random polynomials of order $n=1,2,\dots$ with independent identically distributed coefficients whose average number of real zeros is less than nine for all $n$. The average number $n/2+o(1)$ of complex zeros is concentrated near zero and the same number goes to infinity as $n\to\infty$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
random polynomials, average number of real zeros.
                    
                  
                
                
                @article{TVP_2005_50_3_a7,
     author = {D. N. Zaporozhets},
     title = {An example of a random polynomial with unusual behavior of roots},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {549--555},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a7/}
}
                      
                      
                    D. N. Zaporozhets. An example of a random polynomial with unusual behavior of roots. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 549-555. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a7/
