The structure of the UMVUEs from categorical data
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 597-604
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let an observation $X$ take finitely many values with probabilities $p_1(\theta),\ldots,p_N(\theta)$ depending on an abstract parameter $\theta\in\Theta$. It is proved that a statistic is a uniformly minimum variance unbiased estimator (UMVUE) if and only if it is measurable with respect to a subalgebra of the finite algebra generated by $X$. In general, this subalgebra is smaller than the minimal sufficient subalgebra for $\theta$ and is explicitly described. It is related to a special partition of a finite set of elements of an abstract linear space.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
linear space, sufficiency.
Mots-clés : estimation, partition, subalgebra
                    
                  
                
                
                Mots-clés : estimation, partition, subalgebra
@article{TVP_2005_50_3_a14,
     author = {A. Kagan and M. Konikov},
     title = {The structure of the {UMVUEs} from categorical data},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {597--604},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a14/}
}
                      
                      
                    A. Kagan; M. Konikov. The structure of the UMVUEs from categorical data. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 597-604. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a14/
