The structure of the UMVUEs from categorical data
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 597-604

Voir la notice de l'article provenant de la source Math-Net.Ru

Let an observation $X$ take finitely many values with probabilities $p_1(\theta),\ldots,p_N(\theta)$ depending on an abstract parameter $\theta\in\Theta$. It is proved that a statistic is a uniformly minimum variance unbiased estimator (UMVUE) if and only if it is measurable with respect to a subalgebra of the finite algebra generated by $X$. In general, this subalgebra is smaller than the minimal sufficient subalgebra for $\theta$ and is explicitly described. It is related to a special partition of a finite set of elements of an abstract linear space.
Keywords: linear space, sufficiency.
Mots-clés : estimation, partition, subalgebra
@article{TVP_2005_50_3_a14,
     author = {A. Kagan and M. Konikov},
     title = {The structure of the {UMVUEs} from categorical data},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {597--604},
     publisher = {mathdoc},
     volume = {50},
     number = {3},
     year = {2005},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a14/}
}
TY  - JOUR
AU  - A. Kagan
AU  - M. Konikov
TI  - The structure of the UMVUEs from categorical data
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 597
EP  - 604
VL  - 50
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a14/
LA  - en
ID  - TVP_2005_50_3_a14
ER  - 
%0 Journal Article
%A A. Kagan
%A M. Konikov
%T The structure of the UMVUEs from categorical data
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 597-604
%V 50
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a14/
%G en
%F TVP_2005_50_3_a14
A. Kagan; M. Konikov. The structure of the UMVUEs from categorical data. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 3, pp. 597-604. http://geodesic.mathdoc.fr/item/TVP_2005_50_3_a14/