On the central limit Newman theorem
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 382-390

Voir la notice de l'article provenant de la source Math-Net.Ru

We construct an example of a strictly stationary associated random sequence which does not satisfy the central limit theorem and whose the partial sums' variance grows in a defined regular way. This result generalizes the well-known example of N. Herrndorf and shows the optimality of conditions in the classical Newman's theorem.
Keywords: associated random variables, stationarity, central limit theorem, slowly varying functions.
@article{TVP_2005_50_2_a12,
     author = {A. P. Shashkin},
     title = {On the central limit {Newman} theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {382--390},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a12/}
}
TY  - JOUR
AU  - A. P. Shashkin
TI  - On the central limit Newman theorem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 382
EP  - 390
VL  - 50
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a12/
LA  - ru
ID  - TVP_2005_50_2_a12
ER  - 
%0 Journal Article
%A A. P. Shashkin
%T On the central limit Newman theorem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 382-390
%V 50
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a12/
%G ru
%F TVP_2005_50_2_a12
A. P. Shashkin. On the central limit Newman theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 382-390. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a12/