On the central limit Newman theorem
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 382-390
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We construct an example of a strictly stationary associated random sequence which does not satisfy the central limit theorem and whose the partial sums' variance grows in a defined regular way. This result generalizes the well-known example of N. Herrndorf and shows the optimality of conditions in the classical Newman's theorem.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
associated random variables, stationarity, central limit theorem, slowly varying functions.
                    
                  
                
                
                @article{TVP_2005_50_2_a12,
     author = {A. P. Shashkin},
     title = {On the central limit {Newman} theorem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {382--390},
     publisher = {mathdoc},
     volume = {50},
     number = {2},
     year = {2005},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a12/}
}
                      
                      
                    A. P. Shashkin. On the central limit Newman theorem. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 2, pp. 382-390. http://geodesic.mathdoc.fr/item/TVP_2005_50_2_a12/
