Phase transitions in the time synchronization model
Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 150-158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

There are two types $i=1,2$ of particles on the line $R$, with $N_i$ particles of type $i$. Each particle of type $i$ moves with constant velocity $v_i$. Moreover, any particle of type $i=1,2$ jumps to any particle of type $j=1,2$ with rates $N_{j}^{-1}\alpha _{ij}$. We find phase transitions in the clusterization (synchronization) behavior of this system of particles on different time scales $t=t(N)$ relative to $N=N_1+N_2$.
Keywords: Markov process, stochastic particles system, synchronization model.
@article{TVP_2005_50_1_a8,
     author = {V. A. Malyshev and A. D. Manita},
     title = {Phase transitions in the time synchronization model},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {150--158},
     year = {2005},
     volume = {50},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a8/}
}
TY  - JOUR
AU  - V. A. Malyshev
AU  - A. D. Manita
TI  - Phase transitions in the time synchronization model
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2005
SP  - 150
EP  - 158
VL  - 50
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a8/
LA  - ru
ID  - TVP_2005_50_1_a8
ER  - 
%0 Journal Article
%A V. A. Malyshev
%A A. D. Manita
%T Phase transitions in the time synchronization model
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2005
%P 150-158
%V 50
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a8/
%G ru
%F TVP_2005_50_1_a8
V. A. Malyshev; A. D. Manita. Phase transitions in the time synchronization model. Teoriâ veroâtnostej i ee primeneniâ, Tome 50 (2005) no. 1, pp. 150-158. http://geodesic.mathdoc.fr/item/TVP_2005_50_1_a8/

[1] Greenberg A., Malyshev V. A., Popov S. Yu., “Stochastic model of massively parallel simulation”, Markov Process. Related Fields, 1:4 (1995), 473–490 | MR | Zbl

[2] Kato T., Teoriya vozmuschenii lineinykh operatorov, Mir, M., 1972, 740 pp. | MR

[3] Kipnis C., Landim C., Scaling Limits of Interacting Particle Systems, Springer-Verlag, Berlin, 1999, 442 pp. | MR

[4] Manita A., Shcherbakov V., Asymptotic analysis of a particle system with a mean-field interaction, arXiv: math/0408372

[5] Shcherbakov V., Manita A., “Stochastic particle system with non-local mean-field interaction”, Mezhdunarodnaya konferentsiya “Kolmogorov i sovremennaya matematika”, Tezisy dokladov (Moskva, 2003), MGU, M., 2003, 549–550

[6] Mitra D., Mitrani I., “Analysis and optimum performance of two message-passing parallel processors synchronized by rollback”, Performance Evaluation, 7:2 (1987), 111–124 | DOI | MR | Zbl