On the Skitovich–Darmois theorem for discrete abelian groups
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 596-601 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The following theorem is proved: Let $X$ be a discrete countable Abelian group, let $\xi_1,\xi_2$ be independent random variables with values in the group $X$ and with distributions $\mu_1,\mu_2$, and let $\alpha_j,\beta_j$, $j=1, 2$, be automorphisms of the group $X$. Then the independence of the linear statistics $L_1=\alpha_1\xi_1 + \alpha_2\xi_2$ and $L_2=\beta_1\xi_1 + \beta_2\xi_2$ implies that $\mu_1$ and $\mu_2$ are idempotent distributions.
Keywords: independent linear statistics, discrete Abelian group, Skitovich–Darmois theorem.
@article{TVP_2004_49_3_a9,
     author = {G. M. Feldman and P. Graczyk},
     title = {On the {Skitovich{\textendash}Darmois} theorem for discrete abelian groups},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {596--601},
     year = {2004},
     volume = {49},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a9/}
}
TY  - JOUR
AU  - G. M. Feldman
AU  - P. Graczyk
TI  - On the Skitovich–Darmois theorem for discrete abelian groups
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 596
EP  - 601
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a9/
LA  - ru
ID  - TVP_2004_49_3_a9
ER  - 
%0 Journal Article
%A G. M. Feldman
%A P. Graczyk
%T On the Skitovich–Darmois theorem for discrete abelian groups
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 596-601
%V 49
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a9/
%G ru
%F TVP_2004_49_3_a9
G. M. Feldman; P. Graczyk. On the Skitovich–Darmois theorem for discrete abelian groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 596-601. http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a9/

[1] Feldman G. M., Arifmetika veroyatnostnykh raspredelenii i kharakterizatsionnye zadachi na abelevykh gruppakh, Naukova Dumka, Kiev, 1990, 168 pp. | MR

[2] Skitovich V. P., “Ob odnom svoistve normalnogo raspredeleniya”, Dokl. AN SSSR, 89:2 (1953), 217–219

[3] Darmois G., “Analyse générale des liaisons stochastiques. Étude particulière de l'analyse factorielle linéaire”, Rev. Inst. Internat. Statistique, 21 (1953), 2–8 | DOI | MR | Zbl

[4] Ghurye S. G., Olkin I., “A characterization of the multivariate normal distribution”, Ann. Math. Statist., 33 (1962), 533–541 | DOI | MR | Zbl

[5] Feldman G. M., “K teoreme Skitovicha–Darmua na abelevykh gruppakh”, Teoriya veroyatn. i ee primen., 37:4 (1992), 695–708 | MR

[6] Feldman G. M., “Teorema Skitovicha–Darmua dlya kompaktnykh grupp”, Teoriya veroyatn. i ee primen., 41:4 (1996), 901–906 | MR

[7] Feldman G. M., “Teorema Skitovicha–Darmua dlya diskretnykh periodicheskikh abelevykh grupp”, Teoriya veroyatn. i ee primen., 42:4 (1997), 747–756 | MR

[8] Feldman G. M., “K teoreme Skitovicha–Darmua dlya konechnykh abelevykh grupp”, Teoriya veroyatn. i ee primen., 45:3 (2000), 603–607 | MR | Zbl

[9] Feldman G. M., Graczyk P., “On the Skitovich–Darmois theorem on compact Abelian groups”, J. Theoret. Probab., 13:3 (2000), 859–869 | DOI | MR | Zbl