On the Skitovich--Darmois theorem for discrete abelian groups
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 596-601
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The following theorem is proved: Let $X$ be a discrete
countable Abelian group,
let $\xi_1,\xi_2$ be independent random variables with values in the group
$X$ and with distributions $\mu_1,\mu_2$, and 
let $\alpha_j,\beta_j$, $j=1, 2$,
be automorphisms of the group $X$. Then the independence of the linear
statistics $L_1=\alpha_1\xi_1 + \alpha_2\xi_2$ and $L_2=\beta_1\xi_1 +
\beta_2\xi_2$ implies that $\mu_1$ and $\mu_2$ 
are idempotent distributions.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
independent linear statistics, discrete Abelian group, Skitovich–Darmois theorem.
                    
                  
                
                
                @article{TVP_2004_49_3_a9,
     author = {G. M. Feldman and P. Graczyk},
     title = {On the {Skitovich--Darmois} theorem for discrete abelian groups},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {596--601},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a9/}
}
                      
                      
                    G. M. Feldman; P. Graczyk. On the Skitovich--Darmois theorem for discrete abelian groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 596-601. http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a9/
