Keywords: catastrophe theory, parametric families of functions, moment method, maximum likelihood methodю.
@article{TVP_2004_49_3_a3,
author = {S. Glukhova and E. A. Palkin},
title = {Application of catastrophe theory for},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {485--502},
year = {2004},
volume = {49},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a3/}
}
S. Glukhova; E. A. Palkin. Application of catastrophe theory for. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 485-502. http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a3/
[1] Thom R., Structural Stability and Morphogenesis: An Outline of a General Theory of Models, Benjamin, Reading, 1975, 348 pp. | MR | Zbl
[2] Gilmor R., Prikladnaya teoriya katastrof, v. 1, Mir, M., 1984, 350 pp. | Zbl
[3] Arnold V. I., Teoriya katastrof, Nauka, M., 1990, 128 pp. | MR
[4] Poston T., Styuart I., Teoriya katastrof i ee prilozheniya, Mir, M., 1980, 607 pp. | MR | Zbl
[5] Cobb L., Koppstein P., Chen N. H., “Estimation and moment recursion relations for multimodal distributions of the exponential family”, J. Amer. Statist. Assoc., 78:381 (1983), 124–130 | DOI | MR | Zbl
[6] Cobb L., Zacks S., “Applications of catastrophe theory for statistical modeling in the biosciences”, J. Amer. Statist. Assoc., 80:392 (1985), 793–802 | DOI | Zbl
[7] Cobb L., “Parameter estimation for the cusp catastrophe model”, Behavioral Sci., 26 (1981), 75–78 | DOI
[8] Oliva T. A., Desarbo W. S., Day D. L., Jedidi K., “GEMCAT: a general multivariate methodology for estimating catastrophe models”, Behaviorial Sci., 32:2 (1987), 121–137 | DOI | MR
[9] Ipatov E. B., Kryukovskii A. S., Lukin D. S., Palkin E. A., “Kraevye katastrofy i asimptotiki”, Dokl. AN SSSR, 291:4 (1986), 823–827 | MR
[10] Kryukovskii A. S., Lukin D. S., Palkin E. A., Kraevye i uglovye katastrofy v zadachakh difraktsii i rasprostraneniya voln, Kazanskii aviatsionnyi in-t, Kazan, 1988, 199 pp.