Application of catastrophe theory for
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 485-502 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This work considers the application of catastrophe theory methods (classification of smooth mappings) to the construction of analytical models of objects and processes based on statistical data. Multimodal one-dimensional statistical distributions are compared to catastrophe models of corank 1, i.e., the $A_N$ series catastrophes. We also propose methods for the calculation of a type $A_N$ catastrophe's parameters (the moment method and the maximum likelihood method), and their modifications applicable to the cases of multimodal and degenerate quasi-unimodal distributions. We provide the results of numeric experiments on constructing statistical catastrophe models for random processes.
Mots-clés : multimodal distributions
Keywords: catastrophe theory, parametric families of functions, moment method, maximum likelihood methodю.
@article{TVP_2004_49_3_a3,
     author = {S. Glukhova and E. A. Palkin},
     title = {Application of catastrophe theory for},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {485--502},
     year = {2004},
     volume = {49},
     number = {3},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a3/}
}
TY  - JOUR
AU  - S. Glukhova
AU  - E. A. Palkin
TI  - Application of catastrophe theory for
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 485
EP  - 502
VL  - 49
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a3/
LA  - ru
ID  - TVP_2004_49_3_a3
ER  - 
%0 Journal Article
%A S. Glukhova
%A E. A. Palkin
%T Application of catastrophe theory for
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 485-502
%V 49
%N 3
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a3/
%G ru
%F TVP_2004_49_3_a3
S. Glukhova; E. A. Palkin. Application of catastrophe theory for. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 485-502. http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a3/

[1] Thom R., Structural Stability and Morphogenesis: An Outline of a General Theory of Models, Benjamin, Reading, 1975, 348 pp. | MR | Zbl

[2] Gilmor R., Prikladnaya teoriya katastrof, v. 1, Mir, M., 1984, 350 pp. | Zbl

[3] Arnold V. I., Teoriya katastrof, Nauka, M., 1990, 128 pp. | MR

[4] Poston T., Styuart I., Teoriya katastrof i ee prilozheniya, Mir, M., 1980, 607 pp. | MR | Zbl

[5] Cobb L., Koppstein P., Chen N. H., “Estimation and moment recursion relations for multimodal distributions of the exponential family”, J. Amer. Statist. Assoc., 78:381 (1983), 124–130 | DOI | MR | Zbl

[6] Cobb L., Zacks S., “Applications of catastrophe theory for statistical modeling in the biosciences”, J. Amer. Statist. Assoc., 80:392 (1985), 793–802 | DOI | Zbl

[7] Cobb L., “Parameter estimation for the cusp catastrophe model”, Behavioral Sci., 26 (1981), 75–78 | DOI

[8] Oliva T. A., Desarbo W. S., Day D. L., Jedidi K., “GEMCAT: a general multivariate methodology for estimating catastrophe models”, Behaviorial Sci., 32:2 (1987), 121–137 | DOI | MR

[9] Ipatov E. B., Kryukovskii A. S., Lukin D. S., Palkin E. A., “Kraevye katastrofy i asimptotiki”, Dokl. AN SSSR, 291:4 (1986), 823–827 | MR

[10] Kryukovskii A. S., Lukin D. S., Palkin E. A., Kraevye i uglovye katastrofy v zadachakh difraktsii i rasprostraneniya voln, Kazanskii aviatsionnyi in-t, Kazan, 1988, 199 pp.