Unified limit theorems for increments of processes with independent increments
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 601-609

Voir la notice de l'article provenant de la source Math-Net.Ru

A unified theory is constructed which describes the a.s. (almost surely) behavior of increments of stochastically continuous homogeneous processes with independent increments. This theory includes the strong law of large numbers, the Erdös–Rényi law, the Shepp law, the Csörgő–Révész law, and the law of the iterated logarithm. The range of applicability of the results is extended from several particular cases to the whole class of stochastically continuous homogeneous processes with independent increments.
Keywords: increments of processes with independent increments, Erdös–Rényi law, Shepp law, the law of large numbers, the law of the iterated logarithm.
@article{TVP_2004_49_3_a10,
     author = {A. N. Frolov},
     title = {Unified limit theorems for increments of processes with independent increments},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {601--609},
     publisher = {mathdoc},
     volume = {49},
     number = {3},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a10/}
}
TY  - JOUR
AU  - A. N. Frolov
TI  - Unified limit theorems for increments of processes with independent increments
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 601
EP  - 609
VL  - 49
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a10/
LA  - ru
ID  - TVP_2004_49_3_a10
ER  - 
%0 Journal Article
%A A. N. Frolov
%T Unified limit theorems for increments of processes with independent increments
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 601-609
%V 49
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a10/
%G ru
%F TVP_2004_49_3_a10
A. N. Frolov. Unified limit theorems for increments of processes with independent increments. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 601-609. http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a10/