@article{TVP_2004_49_3_a10,
author = {A. N. Frolov},
title = {Unified limit theorems for increments of processes with independent increments},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {601--609},
year = {2004},
volume = {49},
number = {3},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a10/}
}
A. N. Frolov. Unified limit theorems for increments of processes with independent increments. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 3, pp. 601-609. http://geodesic.mathdoc.fr/item/TVP_2004_49_3_a10/
[1] Shepp L. A., “A limit law concerning moving averages”, Ann. Math. Statist., 35 (1964), 424–428 | DOI | MR | Zbl
[2] Erdős P., Rényi A., “On a new law of large numbers”, J. Anal. Math., 23 (1970), 103–111 | DOI | MR | Zbl
[3] Csörgő S., “Erdős–Rényi laws”, Ann. Statist., 7:4 (1979), 772–787 | DOI | MR | Zbl
[4] Deheuvels P., Devroye L., “Limit laws of Erdős–Rényi–Shepp type”, Ann. Probab., 15:4 (1987), 1363–1386 | DOI | MR | Zbl
[5] Mason D. M., “An extended version of the Erdős–Rényi strong law of large numbers”, Ann. Probab., 17:1 (1989), 257–265 | DOI | MR | Zbl
[6] Csörgő M., Révész P., Strong Approximations in Probability and Statistics, Academic Press, New York, London, 1981, 284 pp. | MR | Zbl
[7] Frolov A. N., “On one-sided strong laws for large increments of sums”, Statist. Probab. Lett., 37:2 (1998), 155–165 | DOI | MR | Zbl
[8] Frolov A. N., “Ob asimptoticheskom povedenii priraschenii summ nezavisimykh sluchainykh velichin”, Dokl. RAN, 372:5 (2000), 596–599 | MR | Zbl
[9] Frolov A. N., “One-sided strong laws for increments of sums of i.i.d. random variables”, Studia Sci. Math. Hungar., 39:3–4 (2002), 333–359 | MR | Zbl
[10] Deheuvels P., Steinebach J., “Sharp rates for increments of renewal processes”, Ann. Probab., 17:2 (1989), 700–722 | DOI | MR | Zbl
[11] Steinebach J., “Strong laws for small increments of renewal processes”, Ann. Probab., 19:4 (1991), 1768–1776 | DOI | MR | Zbl
[12] Zinchenko N. M., “Asimptotika priraschenii ustoichivykh sluchainykh protsessov so skachkami odnogo znaka”, Teoriya veroyatn. i ee primen., 32:4 (1987), 793–796 | MR
[13] Borovkov A. A., Teoriya veroyatnostei, Nauka, M., 1986, 431 pp. | MR | Zbl
[14] Ibragimov I. A., Linnik Yu. V., Nezavisimye i statsionarno svyazannye velichiny, Nauka, M., 1965, 524 pp.
[15] Gikhman I. I., Skorokhod A. V., Teoriya sluchainykh protsessov, v. 2, Nauka, M., 1973, 640 pp. | MR
[16] Petrov V. V., Predelnye teoremy dlya summ nezavisimykh sluchainykh velichin, Nauka, M., 1987, 317 pp. | MR