Nonlinear financial averaging, the evolution process,
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 269-296 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The similarities and differences between methods as well as results of financial mathematics and quantum statistics can be of use for both sciences. We consider a process that gives the Gibbs distribution and financial averaging in the limit. The laws of econophysics for buyers are studied, which result in “phase transitions” such as stock price breakouts or defaults. The Pareto and Gauss distributions are obtained for the income and expenditures of various social groups. The notion of turnover rate of capital for a quasi-stable state of society is introduced.
Keywords: evolution process, econophysics, information reduction, stock
Mots-clés : Pareto distribution, finance.
@article{TVP_2004_49_2_a2,
     author = {V. P. Maslov},
     title = {Nonlinear financial averaging, the evolution process,},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {269--296},
     year = {2004},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a2/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Nonlinear financial averaging, the evolution process,
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 269
EP  - 296
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a2/
LA  - ru
ID  - TVP_2004_49_2_a2
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Nonlinear financial averaging, the evolution process,
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 269-296
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a2/
%G ru
%F TVP_2004_49_2_a2
V. P. Maslov. Nonlinear financial averaging, the evolution process,. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 269-296. http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a2/

[1] Vyugin V. V., Maslov V. P., “Ob ekstremalnykh sootnosheniyakh mezhdu additivnymi funktsiyami poter i kolmogorovskoi slozhnostyu”, Problemy peredachi informatsii, 39:4 (2003), 71–87 | MR

[2] Maslov V. P., Chernyi A. S., “O minimizatsii i maksimizatsii entropii v razlichnykh distsiplinakh”, Teoriya veroyatn. i ee primen., 48:3 (2003), 466–486 | MR | Zbl

[3] Maslov V. P., “Zamechanie o kompyuterno-orientirovannom yazyke”, Problemy peredachi informatsii, 39:3 (2003), 72–76 | Zbl

[4] Shiryaev A. N., Veroyatnost, Nauka, M., 1989, 640 pp. | MR

[5] Maslov V. P., “Aksiomy nelineinogo osredneniya v finansovoi matematike i analog fazovogo perekhoda”, Dokl. RAN, 393:6 (2003), 735–739 | MR

[6] Maslov V. P., “Aksiomy nelineinogo osredneniya v finansovoi matematike i dinamika kursa aktsii”, Teoriya veroyatn. i ee primen., 48:4 (2003), 800–810 | MR | Zbl

[7] Maslov V. P., “The notions of entropy, Hamiltonian, temperature, and thermodynamical limit in probability theory used for solving model problems in econophysics”, Russian J. Math. Phys., 9:4 (2002), 437–445 | MR | Zbl

[8] Maslov V. P., Operatornye metody, Nauka, M., 1973, 544 pp. | MR

[9] Fedoryuk M. V., Metod perevala, Nauka, M., 1977, 368 pp. | MR

[10] Maslov V. P., “Zavisimost pokupatelnoi sposobnosti i srednego dokhoda naseleniya ot chisla pokupatelei na spetsializirovannom rynke i v regione. Zakony ekonofiziki”, Dokl. RAN, 395:2 (2004), 164–168 | MR | Zbl

[11] Maslov V. P., “Raskhody pokupatelei i skorost oborota pri nelineinom finansovom osrednenii. Zakony ekonofiziki”, Dokl. RAN, 396:2 (2004), 155–158 | MR | Zbl

[12] Dragulescu A., Yakovenko V. M., “Exponential and power-law probability distributions of wealth and income in United Kingdom and the United States”, Phys. A, 299 (2001), 213–221 | DOI | Zbl

[13] Chebotarev A. M., “Raspredelenie Pareto kak rezultat kompyuternoi rekonstruktsii statistiki avtorynka Rossii”, Ukr. zhurn. “Ekonomist”, 2003, no. 7, 6–9

[14] Loschinin M., “Zakon Pareto: potrebnost pereotkrytiya”, Ukr. zhurnal “Ekonomist”, 2003, no. 2, 58–68

[15] Reed W. J., “The Pareto law of incomes – an explanation and an extension”, Phys. A, 319:1–4 (2003), 469–486 | MR | Zbl

[16] Nagahara Yu., Okazaki M., “Pareto's law for income of individuals and debt of bankrupt companies Hideaki Aoyama and Wataru Souma”, Fractals, 8:3 (2000), 293–300 | DOI

[17] Sornette D., Zajdenweber D., “Economic returns of research: the Pareto law and its implications”, European Phys. J. B, 8 (1999), 653–664 | DOI

[18] Dagum C., “A systemic approach to the generation of income distribution models”, J. Income Distribution, 6:1 (1996), 105–126

[19] Pareto V., Cours d'économie politique, v. 2, F. Pichou, Paris, 1897

[20] Maslov V. P., “Integralnye uravneniya i fazovye perekhody v veroyatnostnykh igrakh. Analogiya so statisticheskoi fizikoi”, Teoriya veroyatn. i ee primen., 48:2 (2003), 403–411 | Zbl

[21] Maslov V. P., “Approksimatsionnye veroyatnosti, zakon kvazistabilnogo rynka i fazovyi perekhod iz “kondensatnogo” sostoyaniya”, Dokl. RAN, 392:6 (2003), 727–732 | MR | Zbl

[22] Maslov V. P., “Srednestatisticheskaya informatsiya otnositelno vypukloi funktsii i obschie lineinye uravneniya dlya prostranstva $\min,\max$”, Dokl. RAN, 393:1 (2003), 20–24 | MR

[23] Maslov V. P., “Ob odnoi modeli vysokotemperaturnoi sverkhprovodimosti”, Dokl. RAN, 391:5 (2003), 605–609 | MR | Zbl

[24] Maslov V. P., “Ekspertizy i eksperimenty”, Novyi mir, 1991, no. 1, 243–252