Mots-clés : Appell polynomials.
@article{TVP_2004_49_2_a10,
author = {A. A. Novikov and A. N. Shiryaev},
title = {On an effective solution of the optimal},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {373--382},
year = {2004},
volume = {49},
number = {2},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a10/}
}
A. A. Novikov; A. N. Shiryaev. On an effective solution of the optimal. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 373-382. http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a10/
[1] Blackwell D., “On optimal systems”, Ann. Math. Statist., 25 (1954), 394–397 | DOI | MR | Zbl
[2] Borovkov A. A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972, 368 pp. | MR
[3] Boyarchenko S., Levendorskiĭ S. Z., Non-Gaussian Merton–Black–Scholes Theory, Adv. Ser. Statist. Sci. Appl. Probab., 9, World Scientific, River Edge, 2002, 398 pp. | MR | Zbl
[4] Robbins G., Sigmund D., Chao I., Teoriya optimalnykh pravil ostanovki, Nauka, M., 1977, 167 pp. | MR
[5] Chow Y. S., Teicher T., Probability Theory: Independence, Interchangeability, Martingales, Springer-Verlag, New York, 1997, 488 pp. | MR
[6] Darling D. A., Liggett T., Taylor H. M., “Optimal stopping for partial sums”, Ann. Math. Statist., 43 (1972), 1363–1368 | DOI | MR | Zbl
[7] Dubins L. E., Savage L. J., Inequalities for Stochastic Processes (How to Gamble if You Must), Dover, New York, 1976, 255 pp. | MR | Zbl
[8] Kingman J. F. C., “Inequalities in the theory of queues”, J. Roy. Statist. Soc. Ser. B, 32 (1970), 102–110 | MR | Zbl
[9] Liu Z., Nain P., Towsley D., “Bounds for a class of stochastic recursive equations”, Math. Methods Oper. Res., 49:2 (1999), 325–333 | MR | Zbl
[10] Mordecki E., “Optimal stopping and perpetual options for Lévy processes”, Finance Stoch., 6:4 (2002), 473–493 | DOI | MR | Zbl
[11] Shiryaev A. N., Statisticheskii posledovatelnyi analiz. Optimalnye pravila ostanovki, Nauka, M., 1976, 272 pp. | MR | Zbl
[12] Stadje W., “An iterative approximation procedure for the distribution of the maximum of a random walk”, Statist. Probab. Lett., 50:4 (2000), 375–381 | DOI | MR | Zbl
[13] Schoutens W., Stochastic Processes and Orthogonal Polynomials, Lecture Notes in Statist., 146, Springer-Verlag, New York, 2000, 163 pp. | MR | Zbl
[14] Viskov O. V., “Sluchainoe bluzhdanie s nepreryvnoi vverkh komponentoi i formula obrascheniya Lagranzha”, Teoriya veroyatn. i ee primen., 45:1 (2000), 166–175 | MR | Zbl