On an effective solution of the optimal
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 373-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We find a solution of the optimal stopping problem for the case when a reward function is an integer power function of a random walk on an infinite time interval. It is shown that an optimal stopping time is a first crossing time through a level defined as the largest root of Appell's polynomial associated with the maximum of the random walk. It is also shown that a value function of the optimal stopping problem on the finite interval $\{0,1\ldots T\}$ converges with an exponential rate as $T\to\infty$ to the limit under the assumption that jumps of the random walk are exponentially bounded.
Keywords: optimal stopping, random walk, rate of convergence
Mots-clés : Appell polynomials.
@article{TVP_2004_49_2_a10,
     author = {A. A. Novikov and A. N. Shiryaev},
     title = {On an effective solution of the optimal},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {373--382},
     year = {2004},
     volume = {49},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a10/}
}
TY  - JOUR
AU  - A. A. Novikov
AU  - A. N. Shiryaev
TI  - On an effective solution of the optimal
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 373
EP  - 382
VL  - 49
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a10/
LA  - ru
ID  - TVP_2004_49_2_a10
ER  - 
%0 Journal Article
%A A. A. Novikov
%A A. N. Shiryaev
%T On an effective solution of the optimal
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 373-382
%V 49
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a10/
%G ru
%F TVP_2004_49_2_a10
A. A. Novikov; A. N. Shiryaev. On an effective solution of the optimal. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 373-382. http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a10/

[1] Blackwell D., “On optimal systems”, Ann. Math. Statist., 25 (1954), 394–397 | DOI | MR | Zbl

[2] Borovkov A. A., Veroyatnostnye protsessy v teorii massovogo obsluzhivaniya, Nauka, M., 1972, 368 pp. | MR

[3] Boyarchenko S., Levendorskiĭ S. Z., Non-Gaussian Merton–Black–Scholes Theory, Adv. Ser. Statist. Sci. Appl. Probab., 9, World Scientific, River Edge, 2002, 398 pp. | MR | Zbl

[4] Robbins G., Sigmund D., Chao I., Teoriya optimalnykh pravil ostanovki, Nauka, M., 1977, 167 pp. | MR

[5] Chow Y. S., Teicher T., Probability Theory: Independence, Interchangeability, Martingales, Springer-Verlag, New York, 1997, 488 pp. | MR

[6] Darling D. A., Liggett T., Taylor H. M., “Optimal stopping for partial sums”, Ann. Math. Statist., 43 (1972), 1363–1368 | DOI | MR | Zbl

[7] Dubins L. E., Savage L. J., Inequalities for Stochastic Processes (How to Gamble if You Must), Dover, New York, 1976, 255 pp. | MR | Zbl

[8] Kingman J. F. C., “Inequalities in the theory of queues”, J. Roy. Statist. Soc. Ser. B, 32 (1970), 102–110 | MR | Zbl

[9] Liu Z., Nain P., Towsley D., “Bounds for a class of stochastic recursive equations”, Math. Methods Oper. Res., 49:2 (1999), 325–333 | MR | Zbl

[10] Mordecki E., “Optimal stopping and perpetual options for Lévy processes”, Finance Stoch., 6:4 (2002), 473–493 | DOI | MR | Zbl

[11] Shiryaev A. N., Statisticheskii posledovatelnyi analiz. Optimalnye pravila ostanovki, Nauka, M., 1976, 272 pp. | MR | Zbl

[12] Stadje W., “An iterative approximation procedure for the distribution of the maximum of a random walk”, Statist. Probab. Lett., 50:4 (2000), 375–381 | DOI | MR | Zbl

[13] Schoutens W., Stochastic Processes and Orthogonal Polynomials, Lecture Notes in Statist., 146, Springer-Verlag, New York, 2000, 163 pp. | MR | Zbl

[14] Viskov O. V., “Sluchainoe bluzhdanie s nepreryvnoi vverkh komponentoi i formula obrascheniya Lagranzha”, Teoriya veroyatn. i ee primen., 45:1 (2000), 166–175 | MR | Zbl