On an effective solution of the optimal
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 373-382
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We find a solution of the optimal stopping problem for the case
when a reward function is an integer power function of a random
walk on an infinite time interval. It is shown that an optimal
stopping time is a first crossing time through a level defined as
the largest root of Appell's polynomial associated with the
maximum of the random walk.  
It is also shown that a value
function of the optimal stopping problem on the finite interval
$\{0,1\ldots T\}$ converges with an exponential rate as
$T\to\infty$ to the limit  under the assumption that jumps of the
random walk are exponentially bounded.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
optimal stopping, random walk, rate of convergence
Mots-clés : Appell polynomials.
                    
                  
                
                
                Mots-clés : Appell polynomials.
@article{TVP_2004_49_2_a10,
     author = {A. A. Novikov and A. N. Shiryaev},
     title = {On an effective solution of the optimal},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {373--382},
     publisher = {mathdoc},
     volume = {49},
     number = {2},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a10/}
}
                      
                      
                    A. A. Novikov; A. N. Shiryaev. On an effective solution of the optimal. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 2, pp. 373-382. http://geodesic.mathdoc.fr/item/TVP_2004_49_2_a10/
