Completely asymmetric stable laws and
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 178-184
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $Y$ be a random variable with a completely asymmetric stable law
and parameter $\alpha$. This
paper proves that a probability distribution of a fractional part
of the logarithm of $Y$ with respect
to any base larger than 1 converges to the uniform distribution
on the interval $[0,1]$ for
$\alpha\to 0$. This implies that the distribution of the first
significant digit of $Y$ for
small $\alpha$ can be approximately described by the Benford law.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
completely asymmetric stable law, Benford law
Mots-clés : Poisson summation formula.
                    
                  
                
                
                Mots-clés : Poisson summation formula.
@article{TVP_2004_49_1_a11,
     author = {A. A. Kulikova and Yu. V. Prokhorov},
     title = {Completely asymmetric stable laws and},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {178--184},
     publisher = {mathdoc},
     volume = {49},
     number = {1},
     year = {2004},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a11/}
}
                      
                      
                    A. A. Kulikova; Yu. V. Prokhorov. Completely asymmetric stable laws and. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 178-184. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a11/
