Completely asymmetric stable laws and
Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 178-184 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Let $Y$ be a random variable with a completely asymmetric stable law and parameter $\alpha$. This paper proves that a probability distribution of a fractional part of the logarithm of $Y$ with respect to any base larger than 1 converges to the uniform distribution on the interval $[0,1]$ for $\alpha\to 0$. This implies that the distribution of the first significant digit of $Y$ for small $\alpha$ can be approximately described by the Benford law.
Keywords: completely asymmetric stable law, Benford law
Mots-clés : Poisson summation formula.
@article{TVP_2004_49_1_a11,
     author = {A. A. Kulikova and Yu. V. Prokhorov},
     title = {Completely asymmetric stable laws and},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {178--184},
     year = {2004},
     volume = {49},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a11/}
}
TY  - JOUR
AU  - A. A. Kulikova
AU  - Yu. V. Prokhorov
TI  - Completely asymmetric stable laws and
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2004
SP  - 178
EP  - 184
VL  - 49
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a11/
LA  - ru
ID  - TVP_2004_49_1_a11
ER  - 
%0 Journal Article
%A A. A. Kulikova
%A Yu. V. Prokhorov
%T Completely asymmetric stable laws and
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2004
%P 178-184
%V 49
%N 1
%U http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a11/
%G ru
%F TVP_2004_49_1_a11
A. A. Kulikova; Yu. V. Prokhorov. Completely asymmetric stable laws and. Teoriâ veroâtnostej i ee primeneniâ, Tome 49 (2004) no. 1, pp. 178-184. http://geodesic.mathdoc.fr/item/TVP_2004_49_1_a11/

[1] Hill T. P., “A statistical derivation of the significant-digit law”, Statist. Sci., 10:4 (1995), 354–363 | MR | Zbl

[2] Kanter M., “Stable densities under change of scale and total variation inequalities”, Ann. Probab., 3:4 (1975), 697–707 | DOI | MR | Zbl

[3] Raimi R. A., “The first digit problem”, Amer. Math. Monthly, 83:7 (1976), 521–538 | DOI | MR | Zbl

[4] Zolotarev V. M., “Preobrazovaniya Mellina–Stiltesa v teorii veroyatnostei”, Teoriya veroyatn. i ee primen., 2:4 (1957), 444–469 | MR

[5] Zolotarev V. M., Odnomernye ustoichivye raspredeleniya, Nauka, M., 1983, 304 pp. | MR

[6] Feller V., Vvedenie v teoriyu veroyatnostei i ee prilozheniya, v. 2, Mir, M., 1984, 752 pp.

[7] Abramovitts M., Stigan I. (red.), Spravochnik po spetsialnym funktsiyam, Nauka, M., 1979, 830 pp. | MR

[8] Prudnikov A. P., Brychkov Yu. A., Marichev O. I., Integraly i ryady. Spetsialnye funktsii, Nauka, M., 1983, 750 pp. | MR | Zbl