Nonlinear averaging axioms in financial mathematics
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 800-810 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the presence of an uncertainty factor, that is, if some variable $X$ assumes several values $x_1,\ldots, x_n$ rather than a single value, one usually performs an averaging over these values with some coefficients (measures) $\alpha_i$ such that $\sum_{i=1}^n\alpha_i=1$ and sets $y=\sum\alpha_ix_i$. For an equity market, there arises a nonlinear averaging for $y$. We consider an averaging of the form $f(y)=\sum\alpha_if_i(x_i)$. Starting from four natural axioms, we prove that either the above-mentioned linear averaging holds, or $y=\log\sum_{i=1}^ne^{x_i}$. An example of a stock price breakout under this summation is given.
Keywords: expectation, uncertainty factor, value of a random variable, bank, stock, financial dynamics, stock price breakout.
Mots-clés : profit
@article{TVP_2003_48_4_a9,
     author = {V. P. Maslov},
     title = {Nonlinear averaging axioms in financial mathematics},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {800--810},
     year = {2003},
     volume = {48},
     number = {4},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a9/}
}
TY  - JOUR
AU  - V. P. Maslov
TI  - Nonlinear averaging axioms in financial mathematics
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 800
EP  - 810
VL  - 48
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a9/
LA  - ru
ID  - TVP_2003_48_4_a9
ER  - 
%0 Journal Article
%A V. P. Maslov
%T Nonlinear averaging axioms in financial mathematics
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 800-810
%V 48
%N 4
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a9/
%G ru
%F TVP_2003_48_4_a9
V. P. Maslov. Nonlinear averaging axioms in financial mathematics. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 800-810. http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a9/

[1] Mushik E., Myuller P., Metody prinyatiya tekhnicheskikh reshenii, Mir, M., 1990, 208 pp.

[2] Gorelik V. A., Ushakov I. A., Issledovanie operatsii, Mashinostroenie, M., 1986, 286 pp. | MR | Zbl

[3] N. N. Moiseev (red.), Sovremennoe sostoyanie teorii issledovaniya operatsii, Nauka, M., 1986, 464 pp. | MR | Zbl

[4] Moiseev N. N., Matematicheskie zadachi sistemnogo analiza, Nauka, M., 1981, 488 pp. | MR

[5] fon Neiman Dzh., Morgenshtern O., Teoriya igr i ekonomicheskoe povedenie, Nauka, M., 1970, 708 pp. | MR

[6] Intriligator M., Matematicheskie metody optimizatsii i ekonomicheskaya teoriya, Progress, M., 1975, 600 pp.

[7] Fishbern P., Teoriya poleznosti dlya prinyatiya reshenii, Nauka, M., 1978, 352 pp. | MR

[8] Germeier Yu. B., Vvedenie v teoriyu issledovaniya operatsii, Nauka, M., 1971, 384 pp. | MR

[9] Maslov V. P., “Ekspertizy i eksperimenty”, Novyi mir, 1991, no. 1, 243–252

[10] Mizes R., Veroyatnost i statistika, Gosizdat, M., L., 1930

[11] Church A., “On the concept of random sequence”, Bull. Amer. Math. Soc., 46:2 (1940), 130–135 | DOI | MR

[12] Ville J., Etude critique de la notion de collectif, Gauthier-Villars, Paris, 1939

[13] Kolmogorov A. N., “On tables of random numbers”, Sankhyā. The Indian Journal of Statistics, Ser. A, 25:4 (1963), 369–376 ; “O tablitsakh sluchainykh chisel”, Semiotika i informatika, 1982, no. 2, 3–13, M., VINITI, vtoroi vypusk za 1981 g. | MR | Zbl | Zbl

[14] Kolmogorov A. N., “Tri podkhoda k opredeleniyu ponyatiya “kolichestva informatsii””, Problemy peredachi informatsii, 1:1 (1965), 3–11 | MR | Zbl

[15] Kolmogorov A. N., “K logicheskim osnovam teorii informatsii i teorii veroyatnostei”, Problemy peredachi informatsii, 5:3 (1969), 3–7 | MR | Zbl

[16] Kolmogorov A. N., “Kombinatornye osnovaniya teorii informatsii i ischisleniya veroyatnostei”, Uspekhi matem. nauk, 38:4 (1983), 27–36 | MR | Zbl

[17] Maslov V. P., “Srednestatisticheskaya informatsiya otnositelno vypukloi funktsii i obschie lineinye uravneniya dlya prostranstva $\min,\max$”, Dokl. RAN, 393:1 (2003), 20–24 | MR