@article{TVP_2003_48_4_a12,
author = {K. Hess},
title = {Conditional zero-one laws},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {828--834},
year = {2003},
volume = {48},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a12/}
}
K. Hess. Conditional zero-one laws. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 4, pp. 828-834. http://geodesic.mathdoc.fr/item/TVP_2003_48_4_a12/
[1] Aldous D., Pitman J., “On the zero-one law for exchangeable events”, Ann. Probab., 7:4 (1979), 704–723 | DOI | MR | Zbl
[2] Bauer H., Wahrscheinlichkeitstheorie, De Gruyter, Berlin, New York, 1991, 520 pp. | MR | Zbl
[3] Blum J. R., Pathak P. K., “A note on the zero-one law”, Ann. Math. Statist., 43 (1972), 1008–1009 | DOI | MR | Zbl
[4] Chow Y. S., Teicher H., Probability Theory, Springer-Verlag, New York, 1997, 488 pp. | MR
[5] De Finetti B., “La prévision: ses lois logiques, ses sources subjectives”, Ann. Inst. H. Poincaré, 7 (1937), 1–68 | MR
[6] Döhler R., “Zur bedingten Unabhängigkeit zufälliger Ereignisse”, Teoriya veroyatn. i ee primen., 25 (1980), 639–645 | MR | Zbl
[7] Hewitt E., Savage L. J., “Symmetric measures on Cartesian products”, Trans. Amer. Math. Soc., 80 (1955), 470–501 | DOI | MR | Zbl
[8] Horn S., Schach S., “An extension of the Hewitt–Savage Zero-One Law”, Ann. Math. Statist., 41 (1970), 2130–2131 | DOI | MR | Zbl
[9] Hunt G. A., Martingales et processus de Markov, Dunod, Paris, 1966, 145 pp. | MR | Zbl
[10] Letta G., “Sur les théorèmes de Hewitt–Savage et de de Finetti”, Lecture Notes in Math., 1372, 1989, 531–534 | MR
[11] Loev M., Teoriya veroyatnostei, IL, M., 1962, 712 pp. | MR
[12] Port S. C., Theoretical Probability for Applications, Wiley, New York, 1994 | MR
[13] Sendler W., “A note on the proof of the zero-one law of Blum and Pathak”, Ann. Probab., 3 (1975), 1055–1058 | DOI | MR | Zbl