Approximate optimal stopping of dependent sequences
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 557-575
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider optimal stopping of sequences of random variables satisfying
some asymptotic independence property. Assuming that the embedded planar
point processes converge to a Poisson process, we introduce some further
conditions to obtain approximation of the optimal stopping problem of the
discrete time sequence by the optimal stopping of the limiting Poisson
process. This limiting problem can be solved in several cases. We apply
this method to obtain approximations for the stopping of moving average
sequences, of hidden Markov chains, and of max-autoregressive sequences. We
also briefly discuss extensions to the case of Poisson cluster processes in
the limit.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
optimal stopping, asymptotic independence, moving average processes, hidden Markov chains.
Mots-clés : Poisson processes
                    
                  
                
                
                Mots-clés : Poisson processes
@article{TVP_2003_48_3_a6,
     author = {R. K\"uhne and L. R\"uschendorf},
     title = {Approximate optimal stopping of dependent sequences},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {557--575},
     publisher = {mathdoc},
     volume = {48},
     number = {3},
     year = {2003},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a6/}
}
                      
                      
                    R. Kühne; L. Rüschendorf. Approximate optimal stopping of dependent sequences. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 557-575. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a6/
