Mots-clés : Poisson processes
@article{TVP_2003_48_3_a6,
author = {R. K\"uhne and L. R\"uschendorf},
title = {Approximate optimal stopping of dependent sequences},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {557--575},
year = {2003},
volume = {48},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a6/}
}
R. Kühne; L. Rüschendorf. Approximate optimal stopping of dependent sequences. Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 3, pp. 557-575. http://geodesic.mathdoc.fr/item/TVP_2003_48_3_a6/
[1] Alpuim M. T., Catkan N. A., Hüsler J., “Extremes and clustering of nonstationary max-AR(1) sequences”, Stochastic Process. Appl., 56:1 (1995), 171–184 | DOI | MR | Zbl
[2] Anderson C., “Extreme value theory for a class of discrete distributions with applications to some stochastic processes”, J. Appl. Probab., 7 (1970), 99–113 | DOI | MR | Zbl
[3] Beska M., Klopotowski A., Slominski L., “Limit theorems for random sums of dependent $d$-dimensional random vectors”, Z. Wahrscheinlichkeitstheor. verw. Geb., 61 (1982), 43–57 | DOI | MR | Zbl
[4] Davis R., Resnick S. I., “Extremes of moving averages of random variables from the domain of attraction of the double exponential distribution”, Stochastic Process. Appl., 30:1 (1988), 41–68 | DOI | MR | Zbl
[5] Davis R., Resnick S. I., “Extremes of moving averages of random variables with finite endpoint”, Ann. Probab., 19:1 (1991), 312–328 | DOI | MR | Zbl
[6] Durrett R., Resnick S. I., “Functional limit theorems for dependent variables”, Ann. Probab., 6:5 (1978), 829–846 | DOI | MR | Zbl
[7] Jakubowski A., “Principle of conditioning in limit theorems for sums of random variables”, Ann. Probab., 14:3 (1986), 902–915 | DOI | MR | Zbl
[8] Kennedy D. P., Kertz R. P., “Limit theorems for threshold-stopped random variables with applications to optimal stopping”, Adv. Appl. Probab., 22:2 (1990), 396–411 | DOI | MR | Zbl
[9] Kennedy D. P., Kertz R. P., “The asymptotic behavior of the reward sequence in the optimal stopping of i.i.d. random variables”, Ann. Probab., 19:1 (1991), 329–341 | DOI | MR | Zbl
[10] Kennedy D. P., Kertz R. P., “Limit theorems for suprema, threshold-stopped random variables and last exits of i.i.d. random variables with costs and discounting, with applications to optimal stopping”, Adv. Appl. Probab., 22:2 (1992), 241–266 | DOI | MR
[11] Kühne R., Probleme des asymptotisch optimalen Stoppens, Dissertation, Universität Freiburg, Freiburg, 1997
[12] Kühne R., Rüschendorf L., “Approximation of optimal stopping problems”, Stochastic Process. Appl., 90:2 (2000), 301–325 | DOI | MR | Zbl
[13] Resnick S. I., Extreme Values, Regular Variation, and Point Processes, Springer-Verlag, New York, Berlin, 1987, 320 pp. | MR | Zbl
[14] Rootzen H., “Extreme value theory for moving average processes”, Ann. Probab., 14:2 (1986), 612–652 | DOI | MR | Zbl