Kolmogorov's example (a survey of actions of infinite-dimensional groups with an invariant probability measure)
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 386-391 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the late 1940s, A. N. Kolmogorov suggested a remarkably simple example of a transitive, but not ergodic, action of the group of all permutations of positive integers. It turned out that such examples arise, as a rule, in the theory of actions of non-locally-compact groups, and for locally compact groups this phenomenon cannot happen. Kolmogorov's example also helps to give a correct definition of the decomposition into ergodic components and orbit partition for actions of general groups.
Mots-clés : invariant set, permutation group
Keywords: transitive action, ergodic components, simplex of invariant measures.
@article{TVP_2003_48_2_a9,
     author = {A. M. Vershik},
     title = {Kolmogorov's example (a survey of actions of infinite-dimensional groups with an invariant probability measure)},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {386--391},
     year = {2003},
     volume = {48},
     number = {2},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a9/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - Kolmogorov's example (a survey of actions of infinite-dimensional groups with an invariant probability measure)
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 386
EP  - 391
VL  - 48
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a9/
LA  - ru
ID  - TVP_2003_48_2_a9
ER  - 
%0 Journal Article
%A A. M. Vershik
%T Kolmogorov's example (a survey of actions of infinite-dimensional groups with an invariant probability measure)
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 386-391
%V 48
%N 2
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a9/
%G ru
%F TVP_2003_48_2_a9
A. M. Vershik. Kolmogorov's example (a survey of actions of infinite-dimensional groups with an invariant probability measure). Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 386-391. http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a9/

[1] Fomin C. V., “O merakh, invariantnykh otnositelno nekotoroi gruppy preobrazovanii”, Izv. AN SSSR, 14:3 (1950), 261–274 | MR | Zbl

[2] Mackey G., “Point realizations of transformation groups”, Illinois J. Math., 6:2 (1962), 327–335 | MR | Zbl

[3] Vershik A. M., “Izmerimye realizatsii nepreryvnykh grupp avtomorfizmov unitarnogo koltsa”, Izv. AN SSSR, 29:1 (1965), 127–136 | Zbl

[4] Vershik A. M., “Izmerimye realizatsii grupp avtomorfizmov i integralnye predstavleniya polozhitelnykh operatorov”, Sib. matem. zhurn., 28:1 (1987), 52–60 | MR | Zbl

[5] Vershik A. M., Gelfand I. M., Graev M. I., “Predstavleniya gruppy diffeomorfizmov”, Uspekhi matem. nauk, 30:6 (1975), 3–50 | MR | Zbl

[6] Erdős P., Rényi A., “Asymmetric graphs”, Acta Math. Acad. Sci. Hungar., 14 (1963), 295–315 | DOI | MR | Zbl

[7] Okstobi Dzh., Mera i kategoriya, Mir, M., 1974, 158 pp.

[8] Vershik A. M., “Cluchainoe metricheskoe prostranstvo est prostranstvo Urysona”, Dokl. AN SSSR, 387:6 (2002), 1–4 | MR

[9] Felps P., Lektsii o teoremakh Shoke, Mir, M., 1968, 112 pp.

[10] Lusky W., “A note on the paper “The Poulsen simplex” of Lindenstrauss, Olsen and Sternfeld”, Ann. Inst. Fourier (Grenoble), 28:2 (1978), 233–243 | MR | Zbl

[11] Vershik A. M., “Klassifikatsiya izmerimykh funktsii neskolkikh argumentov i invariantno raspredelennye sluchainye matritsy”, Funkts. analiz i ego pril., 36:2 (2002), 12–27 | MR | Zbl