Kolmogorov's example (a survey of actions of infinite-dimensional groups with an invariant probability measure)
Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 386-391

Voir la notice de l'article provenant de la source Math-Net.Ru

In the late 1940s, A. N. Kolmogorov suggested a remarkably simple example of a transitive, but not ergodic, action of the group of all permutations of positive integers. It turned out that such examples arise, as a rule, in the theory of actions of non-locally-compact groups, and for locally compact groups this phenomenon cannot happen. Kolmogorov's example also helps to give a correct definition of the decomposition into ergodic components and orbit partition for actions of general groups.
Mots-clés : invariant set, permutation group
Keywords: transitive action, ergodic components, simplex of invariant measures.
@article{TVP_2003_48_2_a9,
     author = {A. M. Vershik},
     title = {Kolmogorov's example (a survey of actions of infinite-dimensional groups with an invariant probability measure)},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {386--391},
     publisher = {mathdoc},
     volume = {48},
     number = {2},
     year = {2003},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a9/}
}
TY  - JOUR
AU  - A. M. Vershik
TI  - Kolmogorov's example (a survey of actions of infinite-dimensional groups with an invariant probability measure)
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2003
SP  - 386
EP  - 391
VL  - 48
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a9/
LA  - ru
ID  - TVP_2003_48_2_a9
ER  - 
%0 Journal Article
%A A. M. Vershik
%T Kolmogorov's example (a survey of actions of infinite-dimensional groups with an invariant probability measure)
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2003
%P 386-391
%V 48
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a9/
%G ru
%F TVP_2003_48_2_a9
A. M. Vershik. Kolmogorov's example (a survey of actions of infinite-dimensional groups with an invariant probability measure). Teoriâ veroâtnostej i ee primeneniâ, Tome 48 (2003) no. 2, pp. 386-391. http://geodesic.mathdoc.fr/item/TVP_2003_48_2_a9/