Goncharov's method and its development in the analysis of different models of random permutations
Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 3, pp. 558-566

Voir la notice de l'article provenant de la source Math-Net.Ru

We show the efficiency of the generating functions method first used by Goncharov who analyzed asymptotic properties of random permutations in a problem of investigating joint distributions of maximal cycle lengths of a random permutation in the Ewens model. The explicit form of the respective multidimensional Goncharov density and its generalizations are obtained.
Keywords: random permutation, random polynomial over finite field, generating function, limit theorem.
@article{TVP_2002_47_3_a9,
     author = {G. I. Ivchenko and Yu. I. Medvedev},
     title = {Goncharov's method and its development in the analysis of different models of random permutations},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {558--566},
     publisher = {mathdoc},
     volume = {47},
     number = {3},
     year = {2002},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a9/}
}
TY  - JOUR
AU  - G. I. Ivchenko
AU  - Yu. I. Medvedev
TI  - Goncharov's method and its development in the analysis of different models of random permutations
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 2002
SP  - 558
EP  - 566
VL  - 47
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a9/
LA  - ru
ID  - TVP_2002_47_3_a9
ER  - 
%0 Journal Article
%A G. I. Ivchenko
%A Yu. I. Medvedev
%T Goncharov's method and its development in the analysis of different models of random permutations
%J Teoriâ veroâtnostej i ee primeneniâ
%D 2002
%P 558-566
%V 47
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a9/
%G ru
%F TVP_2002_47_3_a9
G. I. Ivchenko; Yu. I. Medvedev. Goncharov's method and its development in the analysis of different models of random permutations. Teoriâ veroâtnostej i ee primeneniâ, Tome 47 (2002) no. 3, pp. 558-566. http://geodesic.mathdoc.fr/item/TVP_2002_47_3_a9/