Weak Convergence of a Certain Functional
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 4, pp. 779-784
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider the functional $T_n=(S_1^2+\dots+S_n^2)/(nV_n^2)$ derived from a sequence $\{X_n\}_{n\ge 1}$ of independent identically distributed random variables, where $S_k=X_1+\dots+X_k$, $V_n^2=X_1^2+\dots+X_n^2$. Let $G$ be the distribution function of the random variable $\int_{0}^{1}W^2(t)\,dt$, where $W(t)$, $t\in [0,1]$, is a Wiener process. We show that the distribution function $T_n$ weakly converges to $G$ as $n\to\infty$ if and only if the distribution function of the random variable $X_1$ belongs to the attraction domain of the normal law and $\mathbf{E}X_1=0$.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
weak convergence, convergence in probability, random variable, distribution function.
                    
                  
                
                
                @article{TVP_2001_46_4_a9,
     author = {V. M. Kruglov and G. N. Petrovskaya},
     title = {Weak {Convergence} of a {Certain} {Functional}},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {779--784},
     publisher = {mathdoc},
     volume = {46},
     number = {4},
     year = {2001},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_2001_46_4_a9/}
}
                      
                      
                    V. M. Kruglov; G. N. Petrovskaya. Weak Convergence of a Certain Functional. Teoriâ veroâtnostej i ee primeneniâ, Tome 46 (2001) no. 4, pp. 779-784. http://geodesic.mathdoc.fr/item/TVP_2001_46_4_a9/
