Purely game-theoretic random sequences:~I. Strong law of large numbers and law of the iterated logarithm
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 3, pp. 617-630
Voir la notice de l'article provenant de la source Math-Net.Ru
Random sequences are usually defined with respect to a probability distribution $\mathbf{P}$ (a $\sigma$-additive set function, normed to one, defined over a $\sigma$-algebra) assuming Kolmogorov's axioms for probability theory. In this paper, without using this axiomatics, we give a definition of random (typical) sequences taking as primitive the notion of a martingale and using the principle of the excluded gambling strategy. In this purely game-theoretic framework, no probability distribution or, partially or fully specified, system of conditional probability distributions needs to be introduced. For these typical sequences, we prove direct algorithmic versions of Kolmogorov's strong law of large numbers (SLLN) and of the upper half of Kolmogorov's law of the iterated logarithm (LIL).
Keywords:
algorithmic probability theory, almost sure limit theorems, typical sequences.
Mots-clés : martingales
Mots-clés : martingales
@article{TVP_1999_44_3_a6,
author = {M. Minozzo},
title = {Purely game-theoretic random {sequences:~I.} {Strong} law of large numbers and law of the iterated logarithm},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {617--630},
publisher = {mathdoc},
volume = {44},
number = {3},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_3_a6/}
}
TY - JOUR AU - M. Minozzo TI - Purely game-theoretic random sequences:~I. Strong law of large numbers and law of the iterated logarithm JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1999 SP - 617 EP - 630 VL - 44 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1999_44_3_a6/ LA - en ID - TVP_1999_44_3_a6 ER -
M. Minozzo. Purely game-theoretic random sequences:~I. Strong law of large numbers and law of the iterated logarithm. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 3, pp. 617-630. http://geodesic.mathdoc.fr/item/TVP_1999_44_3_a6/