The traditional pretest estimator
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 2, pp. 401-418

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the problem of estimating k coefficients of interest in a linear regression model when the $(k + 1)$st coefficient is of no interest. The traditional pretest estimator is a two-step estimator of the coefficients of interest based on a t-test for the $(k + 1)$st coefficient. We study the behaviorof this estimator. Questions of admissibility, risk, and regret are addressed.
Keywords: regression analysis, model selection, biased estimation, univariate normal mean, mean squared error criterion, minimax regret.
@article{TVP_1999_44_2_a8,
     author = {J. R. Magnus},
     title = {The traditional pretest estimator},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {401--418},
     publisher = {mathdoc},
     volume = {44},
     number = {2},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a8/}
}
TY  - JOUR
AU  - J. R. Magnus
TI  - The traditional pretest estimator
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1999
SP  - 401
EP  - 418
VL  - 44
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a8/
LA  - en
ID  - TVP_1999_44_2_a8
ER  - 
%0 Journal Article
%A J. R. Magnus
%T The traditional pretest estimator
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1999
%P 401-418
%V 44
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a8/
%G en
%F TVP_1999_44_2_a8
J. R. Magnus. The traditional pretest estimator. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 2, pp. 401-418. http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a8/