The traditional pretest estimator
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 2, pp. 401-418
Voir la notice de l'article provenant de la source Math-Net.Ru
We consider the problem of estimating k coefficients of interest in a linear regression model when the $(k + 1)$st coefficient is of no interest. The traditional pretest estimator is a two-step estimator of the coefficients of interest based on a t-test for the $(k + 1)$st coefficient. We study the behaviorof this estimator. Questions of admissibility, risk, and regret are addressed.
Keywords:
regression analysis, model selection, biased estimation, univariate normal mean, mean squared error criterion, minimax regret.
@article{TVP_1999_44_2_a8,
author = {J. R. Magnus},
title = {The traditional pretest estimator},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {401--418},
publisher = {mathdoc},
volume = {44},
number = {2},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a8/}
}
J. R. Magnus. The traditional pretest estimator. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 2, pp. 401-418. http://geodesic.mathdoc.fr/item/TVP_1999_44_2_a8/