Is there a predictable criterion for mutual singularity of two probability measures on a~filtered space?
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 101-110
Voir la notice de l'article provenant de la source Math-Net.Ru
The theme of providing predictable criteria for absolute continuity and for mutual singularity of two density processes on a filtered probability space is extensively studied, e.g., in the monograph by J. Jacod and A. N. Shiryaev [Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, 1987]. While the issue of absolute continuity is settled there in full generality, for the issue of mutual singularity one technical difficulty remained open [J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, 1987, p. 210]: "We do not know whether it is possible to derive a predictable criterion (necessary and sufficient condition) for $P_T'\perp P_T,\ldots$". It turns out that there are two answers to this question raised in the monograph of J. Jacod and A. N. Shiryaev: On the negative side, we give an easy example showing that in general the answer is no, even when we use a rather wide interpretation of the concept of “predictable criterion”. The difficulty comes from the fact that the density process of a probability measure $P$ with respect to another measure $P'$ may suddenly jump to zero.
On the positive side, we can characterize the set where $P'$ becomes singular with respect to $P$—provided this happens in a continuous way rather than suddenly—as the set where the Hellinger process diverges, which certainly is a "predictable criterion." This theorem extends results in the monograph of J. Jacod and A. N. Shiryaev.
Keywords:
continuity and singularity of probability measures, Hellinger processes, stochastic integrals, stopping times.
@article{TVP_1999_44_1_a6,
author = {W. Schachermayer and W. Schachinger},
title = {Is there a predictable criterion for mutual singularity of two probability measures on a~filtered space?},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {101--110},
publisher = {mathdoc},
volume = {44},
number = {1},
year = {1999},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a6/}
}
TY - JOUR AU - W. Schachermayer AU - W. Schachinger TI - Is there a predictable criterion for mutual singularity of two probability measures on a~filtered space? JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1999 SP - 101 EP - 110 VL - 44 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a6/ LA - en ID - TVP_1999_44_1_a6 ER -
%0 Journal Article %A W. Schachermayer %A W. Schachinger %T Is there a predictable criterion for mutual singularity of two probability measures on a~filtered space? %J Teoriâ veroâtnostej i ee primeneniâ %D 1999 %P 101-110 %V 44 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a6/ %G en %F TVP_1999_44_1_a6
W. Schachermayer; W. Schachinger. Is there a predictable criterion for mutual singularity of two probability measures on a~filtered space?. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 101-110. http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a6/