Is there a predictable criterion for mutual singularity of two probability measures on a~filtered space?
Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 101-110

Voir la notice de l'article provenant de la source Math-Net.Ru

The theme of providing predictable criteria for absolute continuity and for mutual singularity of two density processes on a filtered probability space is extensively studied, e.g., in the monograph by J. Jacod and A. N. Shiryaev [Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, 1987]. While the issue of absolute continuity is settled there in full generality, for the issue of mutual singularity one technical difficulty remained open [J. Jacod and A. N. Shiryaev, Limit Theorems for Stochastic Processes, Springer-Verlag, Berlin, 1987, p. 210]: "We do not know whether it is possible to derive a predictable criterion (necessary and sufficient condition) for $P_T'\perp P_T,\ldots$". It turns out that there are two answers to this question raised in the monograph of J. Jacod and A. N. Shiryaev: On the negative side, we give an easy example showing that in general the answer is no, even when we use a rather wide interpretation of the concept of “predictable criterion”. The difficulty comes from the fact that the density process of a probability measure $P$ with respect to another measure $P'$ may suddenly jump to zero. On the positive side, we can characterize the set where $P'$ becomes singular with respect to $P$—provided this happens in a continuous way rather than suddenly—as the set where the Hellinger process diverges, which certainly is a "predictable criterion." This theorem extends results in the monograph of J. Jacod and A. N. Shiryaev.
Keywords: continuity and singularity of probability measures, Hellinger processes, stochastic integrals, stopping times.
@article{TVP_1999_44_1_a6,
     author = {W. Schachermayer and W. Schachinger},
     title = {Is there a predictable criterion for mutual singularity of two probability measures on a~filtered space?},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {101--110},
     publisher = {mathdoc},
     volume = {44},
     number = {1},
     year = {1999},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a6/}
}
TY  - JOUR
AU  - W. Schachermayer
AU  - W. Schachinger
TI  - Is there a predictable criterion for mutual singularity of two probability measures on a~filtered space?
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1999
SP  - 101
EP  - 110
VL  - 44
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a6/
LA  - en
ID  - TVP_1999_44_1_a6
ER  - 
%0 Journal Article
%A W. Schachermayer
%A W. Schachinger
%T Is there a predictable criterion for mutual singularity of two probability measures on a~filtered space?
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1999
%P 101-110
%V 44
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a6/
%G en
%F TVP_1999_44_1_a6
W. Schachermayer; W. Schachinger. Is there a predictable criterion for mutual singularity of two probability measures on a~filtered space?. Teoriâ veroâtnostej i ee primeneniâ, Tome 44 (1999) no. 1, pp. 101-110. http://geodesic.mathdoc.fr/item/TVP_1999_44_1_a6/