On the mean-variance hedging problem
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 672-691
Cet article a éte moissonné depuis la source Math-Net.Ru
This paper proposes a new approach to the problem of the “optimal” control assets on an incomplete market. The approach develops the known mean-variance hedging method of Folmer, Sonderman, and Schweizer. Some technical assumptions on the approximating sequence such as the nondegeneracy condition and its elements belonging to the space $\mathscr{L}_2$ are excluded. We give examples and an interpretation of obtained results which connect them with such key financial-market notions as completeness and arbitrage.
Keywords:
mean-variance hedging, investment, martingale measure
Mots-clés : arbitrage, option.
Mots-clés : arbitrage, option.
@article{TVP_1998_43_4_a2,
author = {A. V. Melnikov and M. L. Nechaev},
title = {On the mean-variance hedging problem},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {672--691},
year = {1998},
volume = {43},
number = {4},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a2/}
}
A. V. Melnikov; M. L. Nechaev. On the mean-variance hedging problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 672-691. http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a2/