On the mean-variance hedging problem
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 672-691

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper proposes a new approach to the problem of the “optimal” control assets on an incomplete market. The approach develops the known mean-variance hedging method of Folmer, Sonderman, and Schweizer. Some technical assumptions on the approximating sequence such as the nondegeneracy condition and its elements belonging to the space $\mathscr{L}_2$ are excluded. We give examples and an interpretation of obtained results which connect them with such key financial-market notions as completeness and arbitrage.
Keywords: mean-variance hedging, investment, martingale measure
Mots-clés : arbitrage, option.
@article{TVP_1998_43_4_a2,
     author = {A. V. Melnikov and M. L. Nechaev},
     title = {On the mean-variance hedging problem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {672--691},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a2/}
}
TY  - JOUR
AU  - A. V. Melnikov
AU  - M. L. Nechaev
TI  - On the mean-variance hedging problem
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1998
SP  - 672
EP  - 691
VL  - 43
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a2/
LA  - ru
ID  - TVP_1998_43_4_a2
ER  - 
%0 Journal Article
%A A. V. Melnikov
%A M. L. Nechaev
%T On the mean-variance hedging problem
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1998
%P 672-691
%V 43
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a2/
%G ru
%F TVP_1998_43_4_a2
A. V. Melnikov; M. L. Nechaev. On the mean-variance hedging problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 672-691. http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a2/