On the mean-variance hedging problem
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 672-691
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			This paper proposes a new approach to the problem of the “optimal” control assets on an incomplete market. The approach develops the known mean-variance hedging method of Folmer, Sonderman, and Schweizer. Some technical assumptions on the approximating sequence such as the nondegeneracy condition and its elements belonging to the space $\mathscr{L}_2$ are excluded. We give examples and an interpretation of obtained results which connect them with such key financial-market notions as completeness and arbitrage.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Keywords: 
mean-variance hedging, investment, martingale measure
Mots-clés : arbitrage, option.
                    
                  
                
                
                Mots-clés : arbitrage, option.
@article{TVP_1998_43_4_a2,
     author = {A. V. Melnikov and M. L. Nechaev},
     title = {On the mean-variance hedging problem},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {672--691},
     publisher = {mathdoc},
     volume = {43},
     number = {4},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a2/}
}
                      
                      
                    A. V. Melnikov; M. L. Nechaev. On the mean-variance hedging problem. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 4, pp. 672-691. http://geodesic.mathdoc.fr/item/TVP_1998_43_4_a2/
