Local asymptotic efficiency of a~sequential probability ratio testfor $d$-guarantee discriminationof composite hypotheses
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 2, pp. 209-225

Voir la notice de l'article provenant de la source Math-Net.Ru

A sequential Wald test for discrimination of two simple hypotheses $\theta=\theta_1$ and $\theta=\theta_2$ with boundaries $A$ and $B$ is applied to distinguish composite hypotheses $\theta\theta_0$ and $\theta>\theta_0$, the parameters $\theta_1, \theta_2, A$, and $B$ being chosen in such a way that $d$-posteriori probabilities of errors do not exceed the given restrictions $\beta_0$ and $\beta_1$. An asymptotic behavior of boundaries $A, B$ and the average observation time are studied when $\beta=\max\{\beta_0, \beta_1\}\to 0$. An asymptotic $(\beta\to 0)$ comparison is made of ${\mathbb{E}}_{\theta}\nu$ with the least given number of observations necessary for discrimination of composite hypotheses with the same restrictions $\beta_0, \beta_1$ on $d$-posteriori probabilities of errors. It is shown that the minimum (in a neighborhood of the point $\theta=\theta_0$) gain of the average observation time makes up 25%. Therefore, there are sequential tests within the bounds of a $d$-posteriori approach that give a gain in the size of observations for every value of a parameter tested.
Keywords: discrimination of composite hypotheses, asymptotic efficiency, Wiener process, Bayesian paradigm, $d$-posteriori approach, $d$-guarantee, strict restrictions ond-risks, regular statistical experiments, sequential tests, average size of observations, necessary size ofa sample.
@article{TVP_1998_43_2_a0,
     author = {I. N. Volodin and A. A. Novikov},
     title = {Local asymptotic efficiency of a~sequential probability ratio testfor $d$-guarantee discriminationof composite hypotheses},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {209--225},
     publisher = {mathdoc},
     volume = {43},
     number = {2},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_2_a0/}
}
TY  - JOUR
AU  - I. N. Volodin
AU  - A. A. Novikov
TI  - Local asymptotic efficiency of a~sequential probability ratio testfor $d$-guarantee discriminationof composite hypotheses
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1998
SP  - 209
EP  - 225
VL  - 43
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1998_43_2_a0/
LA  - ru
ID  - TVP_1998_43_2_a0
ER  - 
%0 Journal Article
%A I. N. Volodin
%A A. A. Novikov
%T Local asymptotic efficiency of a~sequential probability ratio testfor $d$-guarantee discriminationof composite hypotheses
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1998
%P 209-225
%V 43
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1998_43_2_a0/
%G ru
%F TVP_1998_43_2_a0
I. N. Volodin; A. A. Novikov. Local asymptotic efficiency of a~sequential probability ratio testfor $d$-guarantee discriminationof composite hypotheses. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 2, pp. 209-225. http://geodesic.mathdoc.fr/item/TVP_1998_43_2_a0/