Local asymptotic efficiency of a~sequential probability ratio testfor $d$-guarantee discriminationof composite hypotheses
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 2, pp. 209-225
Voir la notice de l'article provenant de la source Math-Net.Ru
A sequential Wald test for discrimination of two simple hypotheses $\theta=\theta_1$ and $\theta=\theta_2$ with boundaries $A$ and $B$ is applied to distinguish composite hypotheses $\theta\theta_0$ and $\theta>\theta_0$, the parameters $\theta_1, \theta_2, A$, and $B$ being chosen in such a way that $d$-posteriori probabilities of errors do not exceed the given restrictions $\beta_0$ and $\beta_1$. An asymptotic behavior of boundaries $A, B$ and the average observation time are studied when $\beta=\max\{\beta_0, \beta_1\}\to 0$. An asymptotic $(\beta\to 0)$ comparison is made of ${\mathbb{E}}_{\theta}\nu$ with the least given number of observations necessary for discrimination of composite hypotheses with the same restrictions $\beta_0, \beta_1$ on $d$-posteriori probabilities of errors. It is shown that the minimum (in a neighborhood of the point $\theta=\theta_0$) gain of the average observation time makes up 25%. Therefore, there are sequential tests within the bounds of a $d$-posteriori approach that give a gain in the size of observations for every value of a parameter tested.
Keywords:
discrimination of composite hypotheses, asymptotic efficiency, Wiener process, Bayesian paradigm, $d$-posteriori approach, $d$-guarantee, strict restrictions ond-risks, regular statistical experiments, sequential tests, average size of observations, necessary size ofa sample.
@article{TVP_1998_43_2_a0,
author = {I. N. Volodin and A. A. Novikov},
title = {Local asymptotic efficiency of a~sequential probability ratio testfor $d$-guarantee discriminationof composite hypotheses},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {209--225},
publisher = {mathdoc},
volume = {43},
number = {2},
year = {1998},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_2_a0/}
}
TY - JOUR AU - I. N. Volodin AU - A. A. Novikov TI - Local asymptotic efficiency of a~sequential probability ratio testfor $d$-guarantee discriminationof composite hypotheses JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1998 SP - 209 EP - 225 VL - 43 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1998_43_2_a0/ LA - ru ID - TVP_1998_43_2_a0 ER -
%0 Journal Article %A I. N. Volodin %A A. A. Novikov %T Local asymptotic efficiency of a~sequential probability ratio testfor $d$-guarantee discriminationof composite hypotheses %J Teoriâ veroâtnostej i ee primeneniâ %D 1998 %P 209-225 %V 43 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1998_43_2_a0/ %G ru %F TVP_1998_43_2_a0
I. N. Volodin; A. A. Novikov. Local asymptotic efficiency of a~sequential probability ratio testfor $d$-guarantee discriminationof composite hypotheses. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 2, pp. 209-225. http://geodesic.mathdoc.fr/item/TVP_1998_43_2_a0/