On the probability of the existenceof a localized basic state for a discrete Schr\"odinger equation with random potential, perturbed by a compact operator
    
    
  
  
  
      
      
      
        
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 1, pp. 166-171
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $H_d$ be the difference Laplace operator in $l_2(\mathbf{Z}^d)$ and $\mathbf{W}$ be a discrete potential (a bounded diagonal operator). We search for the conditions on the spectrum of the operator $H_d+\mathbf{W}$ under which the complete Hamiltonian $H_d+\mathbf{W}+\mathbf{V}(\omega)$ with random potential $\mathbf{V}(\omega)$ has a localized basic state (a) with positive probability and (b) with probability 1. We prove that the condition that the maximal point of the spectrum of $H_d+\mathbf{W}$ is isolated from the remaining spectral points of the operator is sufficient for (a) to be true (if $\mathbf{W}$is a compact operator this condition is necessary). Respectively, the condition that the length of the random potential does not exceed the distance between the maximal point of the spectrum of $H_d+\mathbf{W}$ and the rightmost point of its essential spectrum is a sufficient one for (b) to be true. It is shown that if $\mathbf{W}$ is an operator of rank 1, then this condition is necessary.
			
            
            
            
          
        
      
                  
                    
                    
                    
                    
                    
                      
Mots-clés : 
indecomposable symmetric matrix
Keywords: boundedself-adjoint operator, discrete Schrö, dinger equation with random potential, compact diagonal operator, operator of rank 1, translation-invariant measure, Anderson's model.
                    
                  
                
                
                Keywords: boundedself-adjoint operator, discrete Schrö, dinger equation with random potential, compact diagonal operator, operator of rank 1, translation-invariant measure, Anderson's model.
@article{TVP_1998_43_1_a12,
     author = {S. V. Savchenko},
     title = {On the probability of the existenceof a localized basic state for a discrete {Schr\"odinger} equation with random potential, perturbed by a compact operator},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {166--171},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_1_a12/}
}
                      
                      
                    TY - JOUR AU - S. V. Savchenko TI - On the probability of the existenceof a localized basic state for a discrete Schr\"odinger equation with random potential, perturbed by a compact operator JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1998 SP - 166 EP - 171 VL - 43 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1998_43_1_a12/ LA - ru ID - TVP_1998_43_1_a12 ER -
%0 Journal Article %A S. V. Savchenko %T On the probability of the existenceof a localized basic state for a discrete Schr\"odinger equation with random potential, perturbed by a compact operator %J Teoriâ veroâtnostej i ee primeneniâ %D 1998 %P 166-171 %V 43 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/TVP_1998_43_1_a12/ %G ru %F TVP_1998_43_1_a12
S. V. Savchenko. On the probability of the existenceof a localized basic state for a discrete Schr\"odinger equation with random potential, perturbed by a compact operator. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 1, pp. 166-171. http://geodesic.mathdoc.fr/item/TVP_1998_43_1_a12/
