On the probability of the existenceof a localized basic state for a discrete Schr\"odinger equation with random potential, perturbed by a compact operator
Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 1, pp. 166-171

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $H_d$ be the difference Laplace operator in $l_2(\mathbf{Z}^d)$ and $\mathbf{W}$ be a discrete potential (a bounded diagonal operator). We search for the conditions on the spectrum of the operator $H_d+\mathbf{W}$ under which the complete Hamiltonian $H_d+\mathbf{W}+\mathbf{V}(\omega)$ with random potential $\mathbf{V}(\omega)$ has a localized basic state (a) with positive probability and (b) with probability 1. We prove that the condition that the maximal point of the spectrum of $H_d+\mathbf{W}$ is isolated from the remaining spectral points of the operator is sufficient for (a) to be true (if $\mathbf{W}$is a compact operator this condition is necessary). Respectively, the condition that the length of the random potential does not exceed the distance between the maximal point of the spectrum of $H_d+\mathbf{W}$ and the rightmost point of its essential spectrum is a sufficient one for (b) to be true. It is shown that if $\mathbf{W}$ is an operator of rank 1, then this condition is necessary.
Mots-clés : indecomposable symmetric matrix
Keywords: boundedself-adjoint operator, discrete Schrö, dinger equation with random potential, compact diagonal operator, operator of rank 1, translation-invariant measure, Anderson's model.
@article{TVP_1998_43_1_a12,
     author = {S. V. Savchenko},
     title = {On the probability of the existenceof a localized basic state for a discrete {Schr\"odinger} equation with random potential, perturbed by a compact operator},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {166--171},
     publisher = {mathdoc},
     volume = {43},
     number = {1},
     year = {1998},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1998_43_1_a12/}
}
TY  - JOUR
AU  - S. V. Savchenko
TI  - On the probability of the existenceof a localized basic state for a discrete Schr\"odinger equation with random potential, perturbed by a compact operator
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1998
SP  - 166
EP  - 171
VL  - 43
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1998_43_1_a12/
LA  - ru
ID  - TVP_1998_43_1_a12
ER  - 
%0 Journal Article
%A S. V. Savchenko
%T On the probability of the existenceof a localized basic state for a discrete Schr\"odinger equation with random potential, perturbed by a compact operator
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1998
%P 166-171
%V 43
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1998_43_1_a12/
%G ru
%F TVP_1998_43_1_a12
S. V. Savchenko. On the probability of the existenceof a localized basic state for a discrete Schr\"odinger equation with random potential, perturbed by a compact operator. Teoriâ veroâtnostej i ee primeneniâ, Tome 43 (1998) no. 1, pp. 166-171. http://geodesic.mathdoc.fr/item/TVP_1998_43_1_a12/