The Skitovich--Darmois theorem for discrete periodic Abelian groups
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 4, pp. 747-756

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper gives a complete description of the periodic Abelian groups $X$ such that the independence of the linear statistics of independent random variables taking values in group $X$ (coefficients of the linear statistics are the automorphisms of group) implies that distributions of the random variables are shifts of the Haar distributions on compact subgroups of group $X$. For the class of groups under consideration the given theorem is a group analogue of the well-known Skitovich–Darmois theorem on a characterization of the Gaussian distribution by the independence of linear statistics.
Keywords: locally compact Abelian group, Gaussian distribution, idempotent distribution, independent linear statistics.
@article{TVP_1997_42_4_a5,
     author = {G. M. Feldman},
     title = {The {Skitovich--Darmois} theorem for discrete periodic {Abelian} groups},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {747--756},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_4_a5/}
}
TY  - JOUR
AU  - G. M. Feldman
TI  - The Skitovich--Darmois theorem for discrete periodic Abelian groups
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1997
SP  - 747
EP  - 756
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1997_42_4_a5/
LA  - ru
ID  - TVP_1997_42_4_a5
ER  - 
%0 Journal Article
%A G. M. Feldman
%T The Skitovich--Darmois theorem for discrete periodic Abelian groups
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1997
%P 747-756
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1997_42_4_a5/
%G ru
%F TVP_1997_42_4_a5
G. M. Feldman. The Skitovich--Darmois theorem for discrete periodic Abelian groups. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 4, pp. 747-756. http://geodesic.mathdoc.fr/item/TVP_1997_42_4_a5/