Asymptotic minimaxity of chi-square tests
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 4, pp. 668-695

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the asymptotic behavior of chi-square tests when a number $k_n$ of cells increases as the sample size $n$ grows. For such a setting we show that a sequence of chi-square tests is asymptotically minimax if $k_n = o(n^2)$ as $n \to \infty$. The proof makes use of a theorem about asymptotic normality of chi-square test statistics obtained under new assumptions.
Keywords: chi-square tests, asymptotic efficiency, asymptotic normality, asymptotically minimax approach, goodness-of-fit testing.
@article{TVP_1997_42_4_a1,
     author = {M. S. Ermakov},
     title = {Asymptotic minimaxity of chi-square tests},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {668--695},
     publisher = {mathdoc},
     volume = {42},
     number = {4},
     year = {1997},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_4_a1/}
}
TY  - JOUR
AU  - M. S. Ermakov
TI  - Asymptotic minimaxity of chi-square tests
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1997
SP  - 668
EP  - 695
VL  - 42
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1997_42_4_a1/
LA  - ru
ID  - TVP_1997_42_4_a1
ER  - 
%0 Journal Article
%A M. S. Ermakov
%T Asymptotic minimaxity of chi-square tests
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1997
%P 668-695
%V 42
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1997_42_4_a1/
%G ru
%F TVP_1997_42_4_a1
M. S. Ermakov. Asymptotic minimaxity of chi-square tests. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 4, pp. 668-695. http://geodesic.mathdoc.fr/item/TVP_1997_42_4_a1/