Effective convergence in probability and an ergodic theorem for individual random sequences
Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 1, pp. 35-50
Voir la notice de l'article provenant de la source Math-Net.Ru
An algorithmic analysis of the ergodic theorem for a measure-preserving transformation is given. We prove that the classical ergodic theorem is not algorithmically effective. We present a formulation and a proof of the ergodic theorem for individual random sequences based on A. N. Kolmogorov's algorithmic approach to the substantiation of the theory of probability and information theory.
Keywords:
ergodic theorem, quasiergodic theorem, stationary measure, convergence in probability, convergence almost everywhere, algorithm, random sequence, algorithmical randomness.
@article{TVP_1997_42_1_a2,
author = {V. V. V'yugin},
title = {Effective convergence in probability and an ergodic theorem for individual random sequences},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {35--50},
publisher = {mathdoc},
volume = {42},
number = {1},
year = {1997},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1997_42_1_a2/}
}
TY - JOUR AU - V. V. V'yugin TI - Effective convergence in probability and an ergodic theorem for individual random sequences JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1997 SP - 35 EP - 50 VL - 42 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1997_42_1_a2/ LA - ru ID - TVP_1997_42_1_a2 ER -
V. V. V'yugin. Effective convergence in probability and an ergodic theorem for individual random sequences. Teoriâ veroâtnostej i ee primeneniâ, Tome 42 (1997) no. 1, pp. 35-50. http://geodesic.mathdoc.fr/item/TVP_1997_42_1_a2/