Cutpoints and exchangeable events for random walks
Teoriâ veroâtnostej i ee primeneniâ, Tome 41 (1996) no. 4, pp. 854-868

Voir la notice de l'article provenant de la source Math-Net.Ru

For a Markov chain $\{S_n\}$, call $S_k$ a cutpoint, and $K$ a cut-epoch, if there is no possible transition from $S_i$ to $S_j$ whenever $i$. We show that a transient random walk of bounded stepsize on an integer lattice has infinitely many cutpoints almost surely. For simple random walk on $\mathbf{Z}^d$, $d \ge 4$, this is due to Lawler. Furthermore, let $G$ be a finitely generated group of growth at least polynomial of degree 5; then for any symmetric random walk on $G$ such that the steps have a bounded support that generates $G$, the cut-epochs have positive density. We also show that for any Markov chain which has infinitely many cutpoints almost surely, the eventual occupation numbers generate the exchangeable $\sigma$-field. Combining these results answers a question posed by Kaimanovich, and partially resolves a conjecture of Diaconis and Freedman.
Keywords: cutpoint, exchangeable, Poisson boundary, random walks on groups.
Mots-clés : Markov chain
@article{TVP_1996_41_4_a8,
     author = {N. James and Y. Peres},
     title = {Cutpoints and exchangeable events for random walks},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {854--868},
     publisher = {mathdoc},
     volume = {41},
     number = {4},
     year = {1996},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1996_41_4_a8/}
}
TY  - JOUR
AU  - N. James
AU  - Y. Peres
TI  - Cutpoints and exchangeable events for random walks
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1996
SP  - 854
EP  - 868
VL  - 41
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1996_41_4_a8/
LA  - en
ID  - TVP_1996_41_4_a8
ER  - 
%0 Journal Article
%A N. James
%A Y. Peres
%T Cutpoints and exchangeable events for random walks
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1996
%P 854-868
%V 41
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1996_41_4_a8/
%G en
%F TVP_1996_41_4_a8
N. James; Y. Peres. Cutpoints and exchangeable events for random walks. Teoriâ veroâtnostej i ee primeneniâ, Tome 41 (1996) no. 4, pp. 854-868. http://geodesic.mathdoc.fr/item/TVP_1996_41_4_a8/