A functional limit theorem for random variables with strong residual dependence
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 4, pp. 813-832
Voir la notice de l'article provenant de la source Math-Net.Ru
To describe a certain model of strongly dependent noise, we introduce the scheme of summation of independent random variables with random replacements. The scheme generates a strictly stationary Markov sequence of random variables. We say that random variables from this sequence have “residual dependence.” In the paper, a Kolmogorov-type inequality for elements of this sequence is given. A functional limit theorem is proved for random polygons generated by these elements. The limiting process turns out to be an Ornstein–Uhlenbeck process.
Keywords:
strong dependence, functional limit theorem, Ornstein–Uhlenbeck process, Gaussian noise model.
@article{TVP_1995_40_4_a7,
author = {O. V. Rusakov},
title = {A functional limit theorem for random variables with strong residual dependence},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {813--832},
publisher = {mathdoc},
volume = {40},
number = {4},
year = {1995},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_4_a7/}
}
TY - JOUR AU - O. V. Rusakov TI - A functional limit theorem for random variables with strong residual dependence JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1995 SP - 813 EP - 832 VL - 40 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1995_40_4_a7/ LA - ru ID - TVP_1995_40_4_a7 ER -
O. V. Rusakov. A functional limit theorem for random variables with strong residual dependence. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 4, pp. 813-832. http://geodesic.mathdoc.fr/item/TVP_1995_40_4_a7/