On probability density functions which are their own characteristic functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 3, pp. 694-698
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $p$ be the probability density of a probability distribution $P$ on the real line $\mathbf R$ with respect to the Lebesgue measure. The characteristic function $\widehat p$ of $p$ is defined as
$$
\widehat p(x):=\int_{\mathbf{R}}e^{ixy}p(y)\,dy,\qquad x\in\mathbf{R}.
$$
We consider probability densities $p$ which are their own characteristic functions, that means
\begin{equation}
\widehat p(x)=\frac1{p(0)}p(x),\qquad x\in\mathbf{R}.
\tag{1}
\end{equation}
By linear combination of Hermitian functions we find a family of probability densities which are solutions of this integral equation. These solutions are entire functions of order 2 and type $\frac12$. This is contradictory to Corollary 3 in [J. L. Teugels, Bull. Soc. Math. Belg., 23 (1971), pp. 236–262.]. Furthermore, we characterize the general solution of the integral equation (1) within the convex cone of probability density functions.
Keywords:
probability density functions, characteristic function, positive definite functions, Hermitian functions
Mots-clés : Fourier transform.
Mots-clés : Fourier transform.
@article{TVP_1995_40_3_a21,
author = {K. Schladitz and H. J. Engelbert},
title = {On probability density functions which are their own characteristic functions},
journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
pages = {694--698},
publisher = {mathdoc},
volume = {40},
number = {3},
year = {1995},
language = {en},
url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_3_a21/}
}
TY - JOUR AU - K. Schladitz AU - H. J. Engelbert TI - On probability density functions which are their own characteristic functions JO - Teoriâ veroâtnostej i ee primeneniâ PY - 1995 SP - 694 EP - 698 VL - 40 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/TVP_1995_40_3_a21/ LA - en ID - TVP_1995_40_3_a21 ER -
K. Schladitz; H. J. Engelbert. On probability density functions which are their own characteristic functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 3, pp. 694-698. http://geodesic.mathdoc.fr/item/TVP_1995_40_3_a21/