On probability density functions which are their own characteristic functions
Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 3, pp. 694-698

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $p$ be the probability density of a probability distribution $P$ on the real line $\mathbf R$ with respect to the Lebesgue measure. The characteristic function $\widehat p$ of $p$ is defined as $$ \widehat p(x):=\int_{\mathbf{R}}e^{ixy}p(y)\,dy,\qquad x\in\mathbf{R}. $$ We consider probability densities $p$ which are their own characteristic functions, that means \begin{equation} \widehat p(x)=\frac1{p(0)}p(x),\qquad x\in\mathbf{R}. \tag{1} \end{equation} By linear combination of Hermitian functions we find a family of probability densities which are solutions of this integral equation. These solutions are entire functions of order 2 and type $\frac12$. This is contradictory to Corollary 3 in [J. L. Teugels, Bull. Soc. Math. Belg., 23 (1971), pp. 236–262.]. Furthermore, we characterize the general solution of the integral equation (1) within the convex cone of probability density functions.
Keywords: probability density functions, characteristic function, positive definite functions, Hermitian functions
Mots-clés : Fourier transform.
@article{TVP_1995_40_3_a21,
     author = {K. Schladitz and H. J. Engelbert},
     title = {On probability density functions which are their own characteristic functions},
     journal = {Teori\^a vero\^atnostej i ee primeneni\^a},
     pages = {694--698},
     publisher = {mathdoc},
     volume = {40},
     number = {3},
     year = {1995},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/TVP_1995_40_3_a21/}
}
TY  - JOUR
AU  - K. Schladitz
AU  - H. J. Engelbert
TI  - On probability density functions which are their own characteristic functions
JO  - Teoriâ veroâtnostej i ee primeneniâ
PY  - 1995
SP  - 694
EP  - 698
VL  - 40
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/TVP_1995_40_3_a21/
LA  - en
ID  - TVP_1995_40_3_a21
ER  - 
%0 Journal Article
%A K. Schladitz
%A H. J. Engelbert
%T On probability density functions which are their own characteristic functions
%J Teoriâ veroâtnostej i ee primeneniâ
%D 1995
%P 694-698
%V 40
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/TVP_1995_40_3_a21/
%G en
%F TVP_1995_40_3_a21
K. Schladitz; H. J. Engelbert. On probability density functions which are their own characteristic functions. Teoriâ veroâtnostej i ee primeneniâ, Tome 40 (1995) no. 3, pp. 694-698. http://geodesic.mathdoc.fr/item/TVP_1995_40_3_a21/